These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27040369)

  • 1. IR-Live: fabrication of a low-cost plastic microfluidic device for infrared spectromicroscopy of living cells.
    Birarda G; Ravasio A; Suryana M; Maniam S; Holman HN; Grenci G
    Lab Chip; 2016 Apr; 16(9):1644-1651. PubMed ID: 27040369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft Lithographic Procedure for Producing Plastic Microfluidic Devices with View-ports Transparent to Visible and Infrared Light.
    Suryana M; Shanmugarajah JV; Maniam SM; Grenci G
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open-channel microfluidic membrane device for long-term FT-IR spectromicroscopy of live adherent cells.
    Loutherback K; Chen L; Holman HY
    Anal Chem; 2015; 87(9):4601-6. PubMed ID: 25886198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the Kinetics of the Cellular Uptake of a Metal Carbonyl Conjugated with a Lipidic Moiety in Living Cells Using Synchrotron Infrared Spectromicroscopy.
    Clède S; Sandt C; Dumas P; Policar C
    Appl Spectrosc; 2020 Jan; 74(1):63-71. PubMed ID: 31617373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium.
    Quaroni L; Zlateva T; Sarafimov B; Kreuzer HW; Wehbe K; Hegg EL; Cinque G
    Biophys Chem; 2014 May; 189():40-8. PubMed ID: 24747675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): toward a powerful label-free cell-based assay.
    Vaccari L; Birarda G; Businaro L; Pacor S; Grenci G
    Anal Chem; 2012 Jun; 84(11):4768-75. PubMed ID: 22524189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile on-stage microfluidic system for long term cell culture, micromanipulation and time lapse assays.
    Huang YX; He CL; Wang P; Pan YT; Tuo WW; Yao CC
    Biosens Bioelectron; 2018 Mar; 101():66-74. PubMed ID: 29040916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SU-8 bonding protocol for the fabrication of microfluidic devices dedicated to FTIR microspectroscopy of live cells.
    Mitri E; Birarda G; Vaccari L; Kenig S; Tormen M; Grenci G
    Lab Chip; 2014 Jan; 14(1):210-8. PubMed ID: 24195959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.
    Karunakaran C; Christensen CR; Gaillard C; Lahlali R; Blair LM; Perumal V; Miller SS; Hitchcock AP
    PLoS One; 2015; 10(3):e0122959. PubMed ID: 25811457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: cytotoxicity considerations.
    Holman HY; Bjornstad KA; McNamara MP; Martin MC; McKinney WR; Blakely EA
    J Biomed Opt; 2002 Jul; 7(3):417-24. PubMed ID: 12175292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metasurface-enhanced infrared spectroscopy in multiwell format for real-time assaying of live cells.
    Huang SH; Sartorello G; Shen PT; Xu C; Elemento O; Shvets G
    Lab Chip; 2023 May; 23(9):2228-2240. PubMed ID: 37010356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressable graphene encapsulation of wet specimens on a chip for optical, electron, infrared and X-ray based spectromicroscopy studies.
    Arble C; Guo H; Matruglio A; Gianoncelli A; Vaccari L; Birarda G; Kolmakov A
    Lab Chip; 2021 Nov; 21(23):4618-4628. PubMed ID: 34679149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared spectroscopy imaging of live epithelial cancer cells under non-aqueous media.
    Soh J; Chueng A; Adio A; Cooper AJ; Birch BR; Lwaleed BA
    J Clin Pathol; 2013 Apr; 66(4):312-8. PubMed ID: 23393203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-100 nm IR spectromicroscopy of living cells.
    Mayet C; Dazzi A; Prazeres R; Allot F; Glotin F; Ortega JM
    Opt Lett; 2008 Jul; 33(14):1611-3. PubMed ID: 18628814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of microfluidic system for the assessment of cell migration on 3D micropatterned substrates.
    Lee EJ; Hwang CM; Baek DH; Lee SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6034-7. PubMed ID: 19964149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities for live cell FT-infrared imaging: macromolecule identification with 2D and 3D localization.
    Mattson EC; Aboualizadeh E; Barabas ME; Stucky CL; Hirschmugl CJ
    Int J Mol Sci; 2013 Nov; 14(11):22753-81. PubMed ID: 24256815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept.
    Valencia L; Canalejas-Tejero V; Clemente M; Fernaud I; Holgado M; Jorcano JL; Velasco D
    Sci Rep; 2021 Jun; 11(1):13160. PubMed ID: 34162909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.