BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27040532)

  • 1. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
    Affi M; Solliec C; Legentilhomme P; Comiti J; Legrand J; Jouanneau S; Thouand G
    Anal Bioanal Chem; 2016 Dec; 408(30):8761-8770. PubMed ID: 27040532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a toxicity biosensor based on Aliivibrio fischeri entrapped in a disposable card.
    Jouanneau S; Durand-Thouand MJ; Thouand G
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4340-5. PubMed ID: 26162438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor.
    Charrier T; Chapeau C; Bendria L; Picart P; Daniel P; Thouand G
    Anal Bioanal Chem; 2011 May; 400(4):1061-70. PubMed ID: 21061000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.
    Futra D; Heng LY; Surif S; Ahmad A; Ling TL
    Sensors (Basel); 2014 Dec; 14(12):23248-68. PubMed ID: 25490588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescent bioreporter pad biosensor for monitoring water toxicity.
    Axelrod T; Eltzov E; Marks RS
    Talanta; 2016; 149():290-297. PubMed ID: 26717844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor.
    Gabriel GV; Lopes PS; Viviani VR
    Anal Biochem; 2014 Jan; 445():73-9. PubMed ID: 24071473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors.
    Jouanneau S; Durand MJ; Thouand G
    Environ Sci Technol; 2012 Nov; 46(21):11979-87. PubMed ID: 22989292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode.
    Daniel R; Almog R; Ron A; Belkin S; Diamand YS
    Biosens Bioelectron; 2008 Dec; 24(4):888-93. PubMed ID: 18774705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line biosensor for the detection of putative toxicity in water contaminants.
    Eltzov E; Slobodnik V; Ionescu RE; Marks RS
    Talanta; 2015 Jan; 132():583-90. PubMed ID: 25476348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain.
    Thouand G; Horry H; Durand MJ; Picart P; Bendriaa L; Daniel P; DuBow MS
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):218-25. PubMed ID: 12883867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity.
    Jung I; Seo HB; Lee JE; Kim BC; Gu MB
    Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated mini biosensor system for continuous water toxicity monitoring.
    Lee JH; Gu MB
    Biosens Bioelectron; 2005 Mar; 20(9):1744-9. PubMed ID: 15681189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips.
    Elad T; Almog R; Yagur-Kroll S; Levkov K; Melamed S; Shacham-Diamand Y; Belkin S
    Environ Sci Technol; 2011 Oct; 45(19):8536-44. PubMed ID: 21875062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor.
    Camanzi L; Bolelli L; Maiolini E; Girotti S; Matteuzzi D
    Environ Toxicol Chem; 2011 Apr; 30(4):801-5. PubMed ID: 21191881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line microbial biosensing and fingerprinting of water pollutants.
    Horsburgh AM; Mardlin DP; Turner NL; Henkler R; Strachan N; Glover LA; Paton GI; Killham K
    Biosens Bioelectron; 2002 Jun; 17(6-7):495-501. PubMed ID: 11959470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescent Escherichia coli strains for the quantitative detection of phosphate and ammonia in coastal and suburban watersheds.
    Cardemil CV; Smulski DR; Larossa RA; Vollmer AC
    DNA Cell Biol; 2010 Sep; 29(9):519-31. PubMed ID: 20491581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioluminescent sensor for high throughput toxicity classification.
    Kim BC; Gu MB
    Biosens Bioelectron; 2003 Aug; 18(8):1015-21. PubMed ID: 12782464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples.
    Zhong Z; Fritzsche M; Pieper SB; Wood TK; Lear KL; Dandy DS; Reardon KF
    Biosens Bioelectron; 2011 Jan; 26(5):2407-12. PubMed ID: 21081273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-Based Whole-Cell Biosensor Platform Utilizing an Immobilization Approach on a Filter Membrane Disk for the Monitoring of Water Toxicants.
    Ma J; Harpaz D; Liu Y; Eltzov E
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters.
    Roda A; Roda B; Cevenini L; Michelini E; Mezzanotte L; Reschiglian P; Hakkila K; Virta M
    Anal Bioanal Chem; 2011 Jul; 401(1):201-11. PubMed ID: 21603915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.