BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27040532)

  • 21. Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water.
    Wasito H; Fatoni A; Hermawan D; Susilowati SS
    Ecotoxicol Environ Saf; 2019 Apr; 170():205-209. PubMed ID: 30529914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research of a bioluminent bacterial-based optical fiber sensor to detecting acute effects of pollutants in water].
    Yu H; He M; Cai Q; Zhang LB
    Huan Jing Ke Xue; 2008 Feb; 29(2):375-9. PubMed ID: 18613508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.
    Yagur-Kroll S; Schreuder E; Ingham CJ; Heideman R; Rosen R; Belkin S
    Biosens Bioelectron; 2015 Feb; 64():625-32. PubMed ID: 25441411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium.
    Gil GC; Kim YJ; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):427-32. PubMed ID: 11888733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biosensors based on the luminous bacteria Photobaterium phosphoreum immobilized in polyvinyl alcohol cryogel for the monitoring of ecotoxicants].
    Efremenko EN; Sen'ko OV; Aleskerova LÉ; Alenina KA; Mazhul' MM; Ismailov AD
    Prikl Biokhim Mikrobiol; 2014; 50(5):490-6. PubMed ID: 25707106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria.
    Choi SH; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):433-40. PubMed ID: 11888734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment.
    Bae JW; Seo HB; Belkin S; Gu MB
    Anal Bioanal Chem; 2020 May; 412(14):3373-3381. PubMed ID: 32072206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and Assay of Simple Light off Biosensor Based on Immobilized Bioluminescent Bacteria for General Toxicity Assays.
    Gabriel GV; Viviani VR
    Methods Mol Biol; 2016; 1461():217-23. PubMed ID: 27424908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment.
    Komaitis E; Vasiliou E; Kremmydas G; Georgakopoulos DG; Georgiou C
    Sensors (Basel); 2010; 10(8):7089-98. PubMed ID: 22163592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy.
    Bhattacharyya J; Read D; Amos S; Dooley S; Killham K; Paton GI
    Environ Pollut; 2005 Apr; 134(3):485-92. PubMed ID: 15620594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.
    Gabriel GV; Viviani VR
    Anal Bioanal Chem; 2016 Dec; 408(30):8881-8893. PubMed ID: 27815607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel cyanobacterial biosensor for detection of herbicides.
    Shao CY; Howe CJ; Porter AJ; Glover LA
    Appl Environ Microbiol; 2002 Oct; 68(10):5026-33. PubMed ID: 12324353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions.
    Cerminati S; Soncini FC; Checa SK
    Chem Commun (Camb); 2015 Apr; 51(27):5917-20. PubMed ID: 25730473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring.
    Nivens DE; McKnight TE; Moser SA; Osbourn SJ; Simpson ML; Sayler GS
    J Appl Microbiol; 2004; 96(1):33-46. PubMed ID: 14678157
    [No Abstract]   [Full Text] [Related]  

  • 35. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains.
    Charrier T; Durand MJ; Jouanneau S; Dion M; Pernetti M; Poncelet D; Thouand G
    Anal Bioanal Chem; 2011 May; 400(4):1051-60. PubMed ID: 21069300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds.
    Li YF; Li FY; Ho CL; Liao VH
    Environ Pollut; 2008 Mar; 152(1):123-9. PubMed ID: 17583401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cell array biosensor for environmental toxicity analysis.
    Lee JH; Mitchell RJ; Kim BC; Cullen DC; Gu MB
    Biosens Bioelectron; 2005 Sep; 21(3):500-7. PubMed ID: 16076440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater.
    Olaniran AO; Hiralal L; Pillay B
    J Environ Monit; 2011 Oct; 13(10):2914-20. PubMed ID: 21904738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.
    Cevenini L; Calabretta MM; Lopreside A; Tarantino G; Tassoni A; Ferri M; Roda A; Michelini E
    Anal Bioanal Chem; 2016 Dec; 408(30):8859-8868. PubMed ID: 27853830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples.
    Buffi N; Merulla D; Beutier J; Barbaud F; Beggah S; van Lintel H; Renaud P; van der Meer JR
    Lab Chip; 2011 Jul; 11(14):2369-77. PubMed ID: 21614381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.