These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 27040836)

  • 1. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.
    Farris DJ; Lichtwark GA
    Comput Methods Programs Biomed; 2016 May; 128():111-8. PubMed ID: 27040836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
    Rosa LG; Zia JS; Inan OT; Sawicki GS
    PLoS One; 2021; 16(5):e0246611. PubMed ID: 34038426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound.
    Gillett JG; Barrett RS; Lichtwark GA
    Comput Methods Biomech Biomed Engin; 2013; 16(6):678-87. PubMed ID: 22235878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated tracking of muscle fascicle orientation in B-mode ultrasound images.
    Rana M; Hamarneh G; Wakeling JM
    J Biomech; 2009 Sep; 42(13):2068-73. PubMed ID: 19646699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic tracking of medial gastrocnemius fascicle length during human locomotion.
    Cronin NJ; Carty CP; Barrett RS; Lichtwark G
    J Appl Physiol (1985); 2011 Nov; 111(5):1491-6. PubMed ID: 21836045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of optical flow to estimate continuous changes in muscle thickness from ultrasound image sequences.
    Li Q; Ni D; Yi W; Chen S; Wang T; Chen X
    Ultrasound Med Biol; 2013 Nov; 39(11):2194-201. PubMed ID: 23969163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Fascicle Length Estimation on Muscle Ultrasound Images With an Orientation-Sensitive Segmentation.
    Zhou GQ; Zheng YP
    IEEE Trans Biomed Eng; 2015 Dec; 62(12):2828-36. PubMed ID: 26087480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.
    Zhou GQ; Chan P; Zheng YP
    Ultrasonics; 2015 Mar; 57():72-83. PubMed ID: 25465963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Automated Analysis of Muscle Architecture from B-Mode Ultrasound Images with DL_Track_US.
    Ritsche P; Franchi MV; Faude O; Finni T; Seynnes O; Cronin NJ
    Ultrasound Med Biol; 2024 Feb; 50(2):258-267. PubMed ID: 38007322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of a semi-automated algorithm for the vastus lateralis muscle architecture measurement based on ultrasound images.
    Marzilger R; Legerlotz K; Panteli C; Bohm S; Arampatzis A
    Eur J Appl Physiol; 2018 Feb; 118(2):291-301. PubMed ID: 29214464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-automatic methods for tracking the medial gastrocnemius muscle-tendon junction using ultrasound: a validation study.
    Cenni F; Bar-On L; Monari D; Schless SH; Kalkman BM; Aertbeliën E; Desloovere K; Bruyninckx H
    Exp Physiol; 2020 Jan; 105(1):120-131. PubMed ID: 31677311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TimTrack: A drift-free algorithm for estimating geometric muscle features from ultrasound images.
    van der Zee TJ; Kuo AD
    PLoS One; 2022; 17(3):e0265752. PubMed ID: 35324967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating skeletal muscle fascicle curvature from B-mode ultrasound image sequences.
    Darby J; Li B; Costen N; Loram I; Hodson-Tole E
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1935-45. PubMed ID: 23392339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement.
    Darby J; Hodson-Tole EF; Costen N; Loram ID
    J Appl Physiol (1985); 2012 Jan; 112(2):313-27. PubMed ID: 22033532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Method for Ultrasound-Based Tracking of Skeletal Muscle Architecture.
    Verheul J; Yeo SH
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1114-1124. PubMed ID: 36173784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel planar tracking technology for physiological image analysis.
    Osborne TM; Lakie M
    J Neurosci Methods; 2011 Oct; 202(1):53-9. PubMed ID: 21907238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic tracking of muscle fascicles in ultrasound images using localized Radon transform.
    Zhao H; Zhang LQ
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2094-101. PubMed ID: 21518657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.
    Karamanidis K; Travlou A; Krauss P; Jaekel U
    Ultrasound Med Biol; 2016 Jul; 42(7):1689-700. PubMed ID: 27117630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for quantifying in vivo muscle fascicle curvature from ultrasound images.
    Namburete AI; Rana M; Wakeling JM
    J Biomech; 2011 Sep; 44(14):2538-43. PubMed ID: 21840006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treadmill versus overground and barefoot versus shod comparisons of triceps surae fascicle behaviour in human walking and running.
    Cronin NJ; Finni T
    Gait Posture; 2013 Jul; 38(3):528-33. PubMed ID: 23473808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.