These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27041187)

  • 1. THE ROLE OF REACTIVE OXYGEN SPECIES IN COPPER TOXICITY TO TWO FRESHWATER GREEN ALGAE(1).
    Knauert S; Knauer K
    J Phycol; 2008 Apr; 44(2):311-9. PubMed ID: 27041187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term acclimation of Pseudokirchneriella subcapitata (Korshikov) Hindak to different copper concentrations: changes in tolerance and physiology.
    Bossuyt BT; Janssen CR
    Aquat Toxicol; 2004 May; 68(1):61-74. PubMed ID: 15110470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.
    Chen Z; Song S; Wen Y; Zou Y; Liu H
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17910-8. PubMed ID: 27255311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a biotic ligand model for freshwater green algae: surface-bound and internal copper are better predictors of toxicity than free Cu2+-ion activity when pH is varied.
    De Schamphelaere KA; Stauber JL; Wilde KL; Markich SJ; Brown PL; Franklin NM; Creighton NM; Janssen CR
    Environ Sci Technol; 2005 Apr; 39(7):2067-72. PubMed ID: 15871238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata.
    Sousa CA; Soares HMVM; Soares EV
    Aquat Toxicol; 2018 Nov; 204():80-90. PubMed ID: 30205248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the role of the glutathione redox cycle in Cu(II) toxicity to green algae by a chiral perturbation approach.
    Chen H; Chen J; Guo Y; Wen Y; Liu J; Liu W
    Aquat Toxicol; 2012 Sep; 120-121():19-26. PubMed ID: 22609738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.
    Dao LH; Beardall J
    Chemosphere; 2016 Mar; 147():420-9. PubMed ID: 26774308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription.
    Qian H; Li J; Sun L; Chen W; Sheng GD; Liu W; Fu Z
    Aquat Toxicol; 2009 Aug; 94(1):56-61. PubMed ID: 19570583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation.
    Fu L; Hamzeh M; Dodard S; Zhao YH; Sunahara GI
    Environ Toxicol Pharmacol; 2015 May; 39(3):1074-80. PubMed ID: 25867689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species.
    Wen Y; Chen H; Shen C; Zhao M; Liu W
    Environ Sci Technol; 2011 Jun; 45(11):4778-84. PubMed ID: 21545138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-induced oxidative stress in rainbow trout gill cells.
    Bopp SK; Abicht HK; Knauer K
    Aquat Toxicol; 2008 Jan; 86(2):197-204. PubMed ID: 18063143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-species sensitivity comparison.
    De Schamphelaere KA; Nys C; Janssen CR
    Aquat Toxicol; 2014 Oct; 155():348-59. PubMed ID: 25089923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of bacteria on the sensitivity of microalgae to copper in laboratory bioassays.
    Levy JL; Stauber JL; Wakelin SA; Jolley DF
    Chemosphere; 2009 Mar; 74(9):1266-74. PubMed ID: 19101014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms.
    Sousa CA; Soares HMVM; Soares EV
    Aquat Toxicol; 2019 Sep; 214():105265. PubMed ID: 31416018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.
    Zhang W; Tan NG; Fu B; Li SF
    Metallomics; 2015 Mar; 7(3):426-38. PubMed ID: 25569820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris.
    Zhang W; Tan NG; Li SF
    Mol Biosyst; 2014 Jan; 10(1):149-60. PubMed ID: 24226509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper regulation and homeostasis of Daphnia magna and Pseudokirchneriella subcapitata: influence of acclimation.
    Bossuyt BT; Janssen CR
    Environ Pollut; 2005 Jul; 136(1):135-44. PubMed ID: 15809115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth, ROS accumulation site, and photosynthesis inhibition mechanism of Chlorella vulgaris by triclosan.
    Yan J; Zou Y; Zhang F; Zhang S; Huang X; Benoit G
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):12125-12137. PubMed ID: 36107294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are carbon nanotube effects on green algae caused by shading and agglomeration?
    Schwab F; Bucheli TD; Lukhele LP; Magrez A; Nowack B; Sigg L; Knauer K
    Environ Sci Technol; 2011 Jul; 45(14):6136-44. PubMed ID: 21702508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris.
    Qian H; Chen W; Li J; Wang J; Zhou Z; Liu W; Fu Z
    Aquat Toxicol; 2009 May; 92(4):250-7. PubMed ID: 19297032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.