These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27041416)

  • 1. ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1).
    Veraart AJ; Romaní AM; Tornés E; Sabater S
    J Phycol; 2008 Jun; 44(3):564-72. PubMed ID: 27041416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of light availability and herbivory on algal responses to nutrient enrichment in a riparian wetland, Alaska.
    Rober AR; Stevenson RJ; Wyatt KH
    J Phycol; 2015 Jun; 51(3):528-35. PubMed ID: 26986667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community.
    Rosemond AD
    Oecologia; 1993 Jul; 94(4):585-594. PubMed ID: 28314001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Episodic loadings of phosphorus influence growth and composition of benthic algae communities in artificial stream mesocosms.
    Pearce NJT; Thomas KE; Lavoie I; Chambers PA; Yates AG
    Water Res; 2020 Oct; 185():116139. PubMed ID: 32823192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters.
    Kahlert M; McKie BG
    Environ Sci Process Impacts; 2014 Nov; 16(11):2627-34. PubMed ID: 25277172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient.
    DeNicola DM; Lellock AJ
    J Phycol; 2015 Aug; 51(4):739-49. PubMed ID: 26986794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light increases energy transfer efficiency in a boreal stream.
    Lesutienė J; Gorokhova E; Stankevičienė D; Bergman E; Greenberg L
    PLoS One; 2014; 9(11):e113675. PubMed ID: 25412343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams.
    Merseburger G; Martí E; Sabater F; Ortiz JD
    Sci Total Environ; 2011 Feb; 409(5):957-67. PubMed ID: 21185586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships among nutrients, chlorophyll-a, and dissolved oxygen in agricultural streams in Illinois.
    Morgan AM; Royer TV; David MB; Gentry LE
    J Environ Qual; 2006; 35(4):1110-7. PubMed ID: 16738396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of benthic algal recovery following spates: comparison of simulated and natural events.
    Peterson CG; Weibel AC; Grimm NB; Fisher SG
    Oecologia; 1994 Aug; 98(3-4):280-290. PubMed ID: 28313904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excess of nitrogen reduces temporal variability of stream diatom assemblages.
    Huttunen KL; Muotka T; Karjalainen SM; Laamanen T; Aroviita J
    Sci Total Environ; 2020 Apr; 713():136630. PubMed ID: 31958730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of chlorophyll-a as a criterion for establishing nutrient standards in the streams and rivers of Illinois.
    Royer TV; David MB; Gentry LE; Mitchell CA; Starks KM; Heatherly T; Whiles MR
    J Environ Qual; 2008; 37(2):437-47. PubMed ID: 18268307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stream primary producers relate positively to watershed natural gas measures in north-central Arkansas streams.
    Austin BJ; Hardgrave N; Inlander E; Gallipeau C; Entrekin S; Evans-White MA
    Sci Total Environ; 2015 Oct; 529():54-64. PubMed ID: 26005749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diatom Assemblage Changes in Agricultural Alluvial Plain Streams and Application for Nutrient Management.
    Hicks MB; Taylor JM
    J Environ Qual; 2019 Jan; 48(1):83-92. PubMed ID: 30640345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment.
    Andrus JM; Winter D; Scanlan M; Sullivan S; Bollman W; Waggoner JB; Hosmer AJ; Brain RA
    Sci Total Environ; 2013 Aug; 458-460():125-39. PubMed ID: 23644566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams.
    Mulholland PJ; Steinman AD; Marzolf ER; Hart DR; DeAngelis DL
    Oecologia; 1994 Jun; 98(1):40-47. PubMed ID: 28312794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-mediated thresholds in stream-water nutrient composition in a river network.
    Finlay JC; Hood JM; Limm MP; Power ME; Schade JD; Welter JR
    Ecology; 2011 Jan; 92(1):140-50. PubMed ID: 21560684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic and synergistic effects on a stream periphyton community under the influence of pulsed flow velocity increase and nutrient enrichment.
    Bondar-Kunze E; Maier S; Schönauer D; Bahl N; Hein T
    Sci Total Environ; 2016 Dec; 573():594-602. PubMed ID: 27585428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response to basal resources by stream macroinvertebrates is shaped by watershed urbanization, riparian canopy cover, and season.
    Alberts JM; Fritz KM; Buffam I
    Freshw Sci; 2018 Sep; 37(3):640-652. PubMed ID: 31428513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing the light:nutrient hypothesis: Insights into biofilm structure and function using metatranscriptomics.
    Veach AM; Griffiths NA
    Mol Ecol; 2018 Jul; 27(14):2909-2912. PubMed ID: 29998558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.