BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27041617)

  • 1. MOLECULAR PHYLOGENY OF PHYCOCYANIN-CONTAINING CRYPTOPHYTES: EVOLUTION OF BILIPROTEINS AND GEOGRAPHICAL DISTRIBUTION(1).
    Hoef-Emden K
    J Phycol; 2008 Aug; 44(4):985-93. PubMed ID: 27041617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic Relationships among the Cryptophyta: Analyses of Nuclear-Encoded SSU rRNA Sequences Support the Monophyly of Extant Plastid-Containing Lineages.
    Marin B; Klingberg M; Melkonian M
    Protist; 1998 Sep; 149(3):265-76. PubMed ID: 23194638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light capture and pigment diversity in marine and freshwater cryptophytes.
    Cunningham BR; Greenwold MJ; Lachenmyer EM; Heidenreich KM; Davis AC; Dudycha JL; Richardson TL
    J Phycol; 2019 Jun; 55(3):552-564. PubMed ID: 30468692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies on cryptomonad biliprotein subunits. Two different alpha-subunits in Chroomonas phycocyanin-645 and Cryptomonas phycoerythrin-545.
    Sidler W; Kumpf B; Suter F; Morisset W; Wehrmeyer W; Zuber H
    Biol Chem Hoppe Seyler; 1985 Mar; 366(3):233-44. PubMed ID: 4005040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picosecond fluorescence of cryptomonad biliproteins. Effects of excitation intensity and the fluorescence decay times of phycocyanin 612, phycocyanin 645, and phycoerythrin 545.
    Guard-Friar D; MacColl R; Berns DS; Wittmershaus B; Knox RS
    Biophys J; 1985 Jun; 47(6):787-93. PubMed ID: 3926017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revision of the Genus Chroomonas HANSGIRG: The Benefits of DNA-containing Specimens.
    Hoef-Emden K
    Protist; 2018 Nov; 169(5):662-681. PubMed ID: 30125802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-genome ultraconserved element phylogeny of cryptophytes.
    Greenwold MJ; Merritt K; Richardson TL; Dudycha JL
    Protist; 2023 Dec; 174(6):125994. PubMed ID: 37935085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity.
    Hoef-Emden K; Marin B; Melkonian M
    J Mol Evol; 2002 Aug; 55(2):161-79. PubMed ID: 12107593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunochemistry on cryptomonad biliproteins.
    Guard-Friar D; Eisenberg BL; Edwards MR; Maccoll R
    Plant Physiol; 1986 Jan; 80(1):38-42. PubMed ID: 16664604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NEW MARINE MEMBERS OF THE GENUS HEMISELMIS (CRYPTOMONADALES, CRYPTOPHYCEAE)(1).
    Lane CE; Archibald JM
    J Phycol; 2008 Apr; 44(2):439-50. PubMed ID: 27041199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHYLOGENY OF THE EUGLENOID LORICATE GENERA TRACHELOMONAS AND STROMBOMONAS (EUGLENOPHYTA) INFERRED FROM NUCLEAR SSU AND LSU rDNA(1).
    Ciugulea I; Nudelman MA; Brosnan S; Triemer RE
    J Phycol; 2008 Apr; 44(2):406-18. PubMed ID: 27041196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxonomy and phylogeny of a new kleptoplastidal dinoflagellate, Gymnodinium myriopyrenoides sp. nov. (Gymnodiniales, Dinophyceae), and its cryptophyte symbiont.
    Yamaguchi H; Nakayama T; Kai A; Inouye I
    Protist; 2011 Oct; 162(4):650-67. PubMed ID: 21497133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptomonad biliproteins: Bilin types and locations.
    Wedemayer GJ; Kidd DG; Glazer AN
    Photosynth Res; 1996 May; 48(1-2):163-70. PubMed ID: 24271296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilin organization in cryptomonad biliproteins.
    MacColl R; Eisele LE; Dhar M; Ecuyer JP; Hopkins S; Marrone J; Barnard R; Malak H; Lewitus AJ
    Biochemistry; 1999 Mar; 38(13):4097-105. PubMed ID: 10194324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Hemiselmis amylosa sp. nov. and phylogenetic placement of the blue-green cryptomonads H. amylosa and Falcomonas daucoides.
    Clay BL; Kugrens P
    Protist; 1999 Oct; 150(3):297-310. PubMed ID: 10575702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptomonad biliproteins - an evolutionary perspective.
    Glazer AN; Wedemayer GJ
    Photosynth Res; 1995 Nov; 46(1-2):93-105. PubMed ID: 24301572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of intensity and direction of electron flow across bileaflet membranes.
    Chen CH; Berns DS
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3407-11. PubMed ID: 1059127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, beta-tubulin, and LSU rDNA.
    Hansen K; Lobuglio KF; Pfister DH
    Mol Phylogenet Evol; 2005 Jul; 36(1):1-23. PubMed ID: 15904853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary relationships among marine cercozoans as inferred from combined SSU and LSU rDNA sequences and polyubiquitin insertions.
    Chantangsi C; Hoppenrath M; Leander BS
    Mol Phylogenet Evol; 2010 Nov; 57(2):518-27. PubMed ID: 20654723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemiselmis aquamarina sp. nov. (Cryptomonadales, Cryptophyceae), A Cryptophyte with A Novel Phycobiliprotein Type (Cr-PC 564).
    Magalhães K; Santos AL; Vaulot D; Oliveira MC
    Protist; 2021 Aug; 172(4):125832. PubMed ID: 34597847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.