These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27041979)

  • 1. Biorheological Model on Flow of Herschel-Bulkley Fluid through a Tapered Arterial Stenosis with Dilatation.
    Priyadharshini S; Ponalagusamy R
    Appl Bionics Biomech; 2015; 2015():406195. PubMed ID: 27041979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of multi-phase models of blood flow for medium-sized vessels with stenosis.
    Kopernik M; Tokarczyk P
    Acta Bioeng Biomech; 2019; 21(2):63-70. PubMed ID: 31741478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases.
    Chaturani P; Samy RP
    Biorheology; 1985; 22(6):521-31. PubMed ID: 3834958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study.
    Tiwari A; Chauhan SS
    Cardiovasc Eng Technol; 2019 Mar; 10(1):155-172. PubMed ID: 30302623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging elasticity of blood stenosis to detect the role of a non-Newtonian flow midst an arterial tube: Mazumdar and Keller models.
    Awad AM; Mekheimer KS; Elkilany SA; Zaher AZ
    Chin J Phys; 2022 Jun; 77():2520-2540. PubMed ID: 38621015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Behavioral Characteristics in a Gas and Heavy Oil Stratified Flow According to the Herschel-Bulkley Fluid Model.
    Hou LT; Liu S; Zhang J; Xu JY
    ACS Omega; 2020 Jul; 5(28):17787-17800. PubMed ID: 32715265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsatile flow of non-Newtonian fluids through arterial stenoses.
    Tu C; Deville M
    J Biomech; 1996 Jul; 29(7):899-908. PubMed ID: 8809620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of viscosity measurements obtained using the short back extrusion method. Part 2: Verification of short back extrusion in viscometry.
    Hoshino T
    J Texture Stud; 2020 Apr; 51(2):214-224. PubMed ID: 32022270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of human blood viscosity a using Falling Needle Rheometer and the correlation to the Modified Herschel-Bulkley model equation.
    Yamamoto H; Yabuta T; Negi Y; Horikawa D; Kawamura K; Tamura E; Tanaka K; Ishida F
    Heliyon; 2020 Sep; 6(9):e04792. PubMed ID: 33015382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PFG NMR and Bayesian analysis to characterise non-Newtonian fluids.
    Blythe TW; Sederman AJ; Stitt EH; York AP; Gladden LF
    J Magn Reson; 2017 Jan; 274():103-114. PubMed ID: 27898299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-newtonian fluid flow through three-dimensional disordered porous media.
    Morais AF; Seybold H; Herrmann HJ; Andrade JS
    Phys Rev Lett; 2009 Nov; 103(19):194502. PubMed ID: 20365926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory for flow of Casson and Herschel-Bulkley fluids in cone-plate viscometers.
    Chaturani P; Narasimman S
    Biorheology; 1988; 25(1-2):199-207. PubMed ID: 3196817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow in tapered tubes with biorheological applications.
    Chaturani P; Pralhad RN
    Biorheology; 1985; 22(4):303-14. PubMed ID: 4063486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel ZnO Nanoparticles Enhanced Surfactant Based Viscoelastic Fluid Systems for Fracturing under High Temperature and High Shear Rate Conditions: Synthesis, Rheometric Analysis, and Fluid Model Derivation.
    Patel MC; Ayoub MA; Hassan AM; Idress MB
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow of Casson's fluid through stenosed arteries with applications to blood flow.
    Chaturani P; Samy RP
    Biorheology; 1986; 23(5):499-511. PubMed ID: 3651573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.