These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27041979)

  • 41. Shear-augmented dispersion in non-Newtonian fluids.
    Sharp MK
    Ann Biomed Eng; 1993; 21(4):407-15. PubMed ID: 8214825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm.
    Zaman A; Ali N; Anwar Bég O
    Med Biol Eng Comput; 2016 Sep; 54(9):1423-36. PubMed ID: 26541601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pressure losses in non-Newtonian flow through rigid wall tapered tubes.
    How TV; Black RA
    Biorheology; 1987; 24(3):337-51. PubMed ID: 3663894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration.
    Chaturani P; Palanisamy V
    Biorheology; 1990; 27(5):747-58. PubMed ID: 2271765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microcontinuum model for pulsatile blood flow through a stenosed tube.
    Chaturani P; Palanisamy V
    Biorheology; 1989; 26(4):835-46. PubMed ID: 2611375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field.
    Dhange M; Sankad G; Safdar R; Jamshed W; Eid MR; Bhujakkanavar U; Gouadria S; Chouikh R
    PLoS One; 2022; 17(7):e0266727. PubMed ID: 35776713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-layered blood flow in stenosed tubes for different diseases.
    Pralhad RN; Schultz DH
    Biorheology; 1988; 25(5):715-26. PubMed ID: 3252923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Universal rescaling of flow curves for yield-stress fluids close to jamming.
    Dinkgreve M; Paredes J; Michels MA; Bonn D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012305. PubMed ID: 26274160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical study of unsteady stenosis flow: parametric evaluation of power-law model.
    Ng EY; Siauw WL; Goh WE
    J Med Eng Technol; 2000; 24(5):203-9. PubMed ID: 11204243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Data analyses on temperature-dependent behaviour of water based drilling fluid rheological models.
    Anawe PAL; Folayan JA
    Data Brief; 2018 Dec; 21():289-298. PubMed ID: 30364738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wall shear stress and near-wall flows in the stenosed femoral artery.
    Barber T
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1048-1055. PubMed ID: 28540762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.
    Tripathi J; Vasu B; Bég OA; Mounika BR; Gorla RSR
    Microvasc Res; 2022 Jul; 142():104375. PubMed ID: 35577615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic response of wall shear stress on the stenosed artery.
    Sen S; Chakravarty S
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):523-9. PubMed ID: 19294542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-Newtonian flow patterns associated with an arterial stenosis.
    Luo XY; Kuang ZB
    J Biomech Eng; 1992 Nov; 114(4):512-4. PubMed ID: 1487904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rheological properties of salep powder-milk mixture.
    Develi Işıklı N; Dönmez MN; Kozan N; Karababa E
    J Food Sci Technol; 2015 Oct; 52(10):6556-64. PubMed ID: 26396401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of non-Newtonian viscosity of blood on microvascular impairment.
    Moh JH; Cho YI; Cho DJ; Kim D; Banerjee RK
    Clin Hemorheol Microcirc; 2014; 57(2):111-8. PubMed ID: 24584322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Instantaneous Normal Modes Reveal Structural Signatures for the Herschel-Bulkley Rheology in Sheared Glasses.
    Oyama N; Mizuno H; Ikeda A
    Phys Rev Lett; 2021 Sep; 127(10):108003. PubMed ID: 34533339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of the axial flow field in stenosed carotid artery bifurcation models--LDA experiments.
    Gijsen FJ; Palmen DE; van der Beek MH; van de Vosse FN; van Dongen ME; Janssen JD
    J Biomech; 1996 Nov; 29(11):1483-9. PubMed ID: 8894929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clear model fluids to emulate the rheological properties of thickened digested sludge.
    Eshtiaghi N; Yap SD; Markis F; Baudez JC; Slatter P
    Water Res; 2012 Jun; 46(9):3014-22. PubMed ID: 22483711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.