These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27042209)

  • 1. Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase.
    Zhang L; Liang Y; Wu W; Tan X; Lu X
    Biotechnol Biofuels; 2016; 9():80. PubMed ID: 27042209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microbial platform for renewable propane synthesis based on a fermentative butanol pathway.
    Menon N; Pásztor A; Menon BR; Kallio P; Fisher K; Akhtar MK; Leys D; Jones PR; Scrutton NS
    Biotechnol Biofuels; 2015; 8():61. PubMed ID: 25866563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered
    Patrikainen P; Carbonell V; Thiel K; Aro EM; Kallio P
    Metab Eng Commun; 2017 Dec; 5():9-18. PubMed ID: 29188180
    [No Abstract]   [Full Text] [Related]  

  • 4. Renewable and tuneable bio-LPG blends derived from amino acids.
    Amer M; Hoeven R; Kelly P; Faulkner M; Smith MH; Toogood HS; Scrutton NS
    Biotechnol Biofuels; 2020; 13():125. PubMed ID: 32684978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production.
    Basri RS; Rahman RNZRA; Kamarudin NHA; Ali MSM
    Int J Biol Macromol; 2020 Dec; 164():3155-3162. PubMed ID: 32841666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production.
    Hayashi Y; Arai M
    Microb Cell Fact; 2022 Dec; 21(1):256. PubMed ID: 36503511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length.
    Bao L; Li JJ; Jia C; Li M; Lu X
    Biotechnol Biofuels; 2016; 9(1):185. PubMed ID: 27588038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.
    Rodriguez GM; Atsumi S
    Metab Eng; 2014 Sep; 25():227-37. PubMed ID: 25108218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering nature for gaseous hydrocarbon production.
    Amer M; Toogood H; Scrutton NS
    Microb Cell Fact; 2020 Nov; 19(1):209. PubMed ID: 33187524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of non-conserved residues essential for improving the hydrocarbon-producing activity of cyanobacterial aldehyde-deformylating oxygenase.
    Kudo H; Hayashi Y; Arai M
    Biotechnol Biofuels; 2019; 12():89. PubMed ID: 31015863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity.
    Rodriguez GM; Atsumi S
    Microb Cell Fact; 2012 Jun; 11():90. PubMed ID: 22731523
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Shakeel T; Fatma Z; Yazdani SS
    Bio Protoc; 2020 Apr; 10(8):e3593. PubMed ID: 33659559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving alkane synthesis in Escherichia coli via metabolic engineering.
    Song X; Yu H; Zhu K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):757-67. PubMed ID: 26476644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanobacterial Enzymes for Bioalkane Production.
    Arai M; Hayashi Y; Kudo H
    Adv Exp Med Biol; 2018; 1080():119-154. PubMed ID: 30091094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability.
    Shakeel T; Gupta M; Fatma Z; Kumar R; Kumar R; Singh R; Sharma M; Jade D; Gupta D; Fatma T; Yazdani SS
    J Biol Chem; 2018 Jun; 293(24):9148-9161. PubMed ID: 29632075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase.
    Khara B; Menon N; Levy C; Mansell D; Das D; Marsh EN; Leys D; Scrutton NS
    Chembiochem; 2013 Jul; 14(10):1204-8. PubMed ID: 23757044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase.
    Warui DM; Pandelia ME; Rajakovich LJ; Krebs C; Bollinger JM; Booker SJ
    Biochemistry; 2015 Feb; 54(4):1006-15. PubMed ID: 25496470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic metabolic pathways for conversion of CO
    Yunus IS; Anfelt J; Sporre E; Miao R; Hudson EP; Jones PR
    Metab Eng; 2022 Jul; 72():14-23. PubMed ID: 35134557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of fatty acid supply and aldehyde reductase deletion on cyanobacteria alkane generating pathway in Escherichia coli.
    Wang J; Yu H; Song X; Zhu K
    J Ind Microbiol Biotechnol; 2018 May; 45(5):329-334. PubMed ID: 29594624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of residues important for the activity of aldehyde-deformylating oxygenase through investigation into the structure-activity relationship.
    Wang Q; Bao L; Jia C; Li M; Li JJ; Lu X
    BMC Biotechnol; 2017 Mar; 17(1):31. PubMed ID: 28302170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.