BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27042210)

  • 1. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.
    Ji SQ; Wang B; Lu M; Li FL
    Biotechnol Biofuels; 2016; 9():81. PubMed ID: 27042210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.
    Ji SQ; Wang B; Lu M; Li FL
    Appl Environ Microbiol; 2016 Feb; 82(3):868-77. PubMed ID: 26590273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis of endolytic activity of a multidomain alginate lyase from
    Ji S; Dix SR; Aziz AA; Sedelnikova SE; Baker PJ; Rafferty JB; Bullough PA; Tzokov SB; Agirre J; Li FL; Rice DW
    J Biol Chem; 2019 Nov; 294(48):18077-18091. PubMed ID: 31624143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic
    Chades T; Scully SM; Ingvadottir EM; Orlygsson J
    Front Microbiol; 2018; 9():1931. PubMed ID: 30177924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platform construction of molecular breeding for utilization of brown macroalgae.
    Takagi T; Kuroda K; Ueda M
    J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock.
    Contador CA; Shene C; Olivera A; Yoshikuni Y; Buschmann A; Andrews BA; Asenjo JA
    Metab Eng Commun; 2015 Dec; 2():76-84. PubMed ID: 34150511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Draft Genome Sequence of Falsirhodobacter sp. Strain alg1, an Alginate-Degrading Bacterium Isolated from Fermented Brown Algae.
    Mori T; Takahashi M; Tanaka R; Shibata T; Kuroda K; Ueda M; Takeyama H
    Genome Announc; 2014 Aug; 2(4):. PubMed ID: 25146138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
    Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol Production from
    Zhang W; Mao Y; Liu Z; Wang M
    Indian J Microbiol; 2022 Mar; 62(1):112-122. PubMed ID: 34602657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture.
    Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW
    Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw.
    Ma S; Huang Y; Wang C; Fan H; Dai L; Zhou Z; Liu X; Deng Y
    Int J Syst Evol Microbiol; 2017 May; 67(5):1607-1612. PubMed ID: 27902335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae.
    Zhang L; Li X; Zhang X; Li Y; Wang L
    Biotechnol Biofuels; 2021 Jul; 14(1):158. PubMed ID: 34275475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N; Sattayawat P; Yamada M
    BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural transformation of Vibrio natriegens with large genetic cluster enables alginate assimilation for isopentenol production.
    Lee Y; Kim K; Choi M; Seo SW
    Bioresour Technol; 2024 Jun; 406():130988. PubMed ID: 38885723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies.
    Kawai S; Murata K
    Int J Mol Sci; 2016 Feb; 17(2):145. PubMed ID: 26861307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M
    Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology.
    Shibasaki S; Ueda M
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.
    Rahayu F; Tajima T; Kato J; Kato S; Nakashimada Y
    J Biosci Bioeng; 2020 Feb; 129(2):160-164. PubMed ID: 31506242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.