BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27043172)

  • 1. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.
    Hjörleifsson JG; Ásgeirsson B
    Biochim Biophys Acta; 2016 Jul; 1864(7):755-65. PubMed ID: 27043172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.
    Hjörleifsson JG; Ásgeirsson B
    Biochemistry; 2017 Sep; 56(38):5075-5089. PubMed ID: 28829580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride promotes refolding of active
    Hjörleifsson JG; Ásgeirsson B
    FEBS Open Bio; 2019 Jan; 9(1):169-184. PubMed ID: 30652084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible inactivation of alkaline phosphatase from Atlantic cod (Gadus morhua) in urea.
    Asgeirsson B; Guojónsdóttir K
    Biochim Biophys Acta; 2006 Feb; 1764(2):190-8. PubMed ID: 16443405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli.
    Gudjónsdóttir K; Asgeirsson B
    FEBS J; 2008 Jan; 275(1):117-27. PubMed ID: 18067583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation and unfolding of cold-active alkaline phosphatase from atlantic cod in the presence of guanidinium chloride.
    Asgeirsson B; Hauksson JB; Gunnarsson GH
    Eur J Biochem; 2000 Nov; 267(21):6403-12. PubMed ID: 11029583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The high catalytic rate of the cold-active Vibrio alkaline phosphatase requires a hydrogen bonding network involving a large interface loop.
    Hjörleifsson JG; Helland R; Magnúsdóttir M; Ásgeirsson B
    FEBS Open Bio; 2021 Jan; 11(1):173-184. PubMed ID: 33197282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.4 A crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase.
    Helland R; Larsen RL; Asgeirsson B
    Biochim Biophys Acta; 2009 Feb; 1794(2):297-308. PubMed ID: 18977465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics fingerprint and inherent asymmetric flexibility of a cold-adapted homodimeric enzyme. A case study of the Vibrio alkaline phosphatase.
    Papaleo E; Renzetti G; Invernizzi G; Asgeirsson B
    Biochim Biophys Acta; 2013 Apr; 1830(4):2970-80. PubMed ID: 23266619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.
    Asgeirsson B; Adalbjörnsson BV; Gylfason GA
    Biochim Biophys Acta; 2007 Jun; 1774(6):679-87. PubMed ID: 17493882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy.
    Heidarsson PO; Sigurdsson ST; Asgeirsson B
    FEBS J; 2009 May; 276(10):2725-35. PubMed ID: 19368558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary structure of cold-adapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence.
    Asgeirsson B; Andrésson OS
    Biochim Biophys Acta; 2001 Sep; 1549(1):99-111. PubMed ID: 11566372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability.
    Martin DC; Pastra-Landis SC; Kantrowitz ER
    Protein Sci; 1999 May; 8(5):1152-9. PubMed ID: 10338026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase.
    Koutsioulis D; Wang E; Tzanodaskalaki M; Nikiforaki D; Deli A; Feller G; Heikinheimo P; Bouriotis V
    Protein Eng Des Sel; 2008 May; 21(5):319-27. PubMed ID: 18411226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of a cold-active alkaline phosphatase by imipenem revealed by in silico modeling of metallo-β-lactamase active sites.
    Chakraborty S; Asgeirsson B; Minda R; Salaye L; Frère JM; Rao BJ
    FEBS Lett; 2012 Oct; 586(20):3710-5. PubMed ID: 22982109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-state kinetic folding mechanism of the H2A/H2B histone heterodimer: the N-terminal tails affect the transition state between a dimeric intermediate and the native dimer.
    Placek BJ; Gloss LM
    J Mol Biol; 2005 Jan; 345(4):827-36. PubMed ID: 15588829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5.
    Wang E; Koutsioulis D; Leiros HK; Andersen OA; Bouriotis V; Hough E; Heikinheimo P
    J Mol Biol; 2007 Mar; 366(4):1318-31. PubMed ID: 17198711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A folding study of Antarctic krill (Euphausia superba) alkaline phosphatase using denaturants.
    Wang ZJ; Lee J; Si YX; Wang W; Yang JM; Yin SJ; Qian GY; Park YD
    Int J Biol Macromol; 2014 Sep; 70():266-74. PubMed ID: 25016161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a T81A mutation at the subunit interface on catalytic properties of alkaline phosphatase from Escherichia coli.
    Orhanović S; Bucević-Popović V; Pavela-Vrancic M; Vujaklija D; Gamulin V
    Int J Biol Macromol; 2006 Dec; 40(1):54-8. PubMed ID: 16859742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding and self-assembly of herpes simplex virus type 1 thymidine kinase.
    Wurth C; Thomas RM; Folkers G; Scapozza L
    J Mol Biol; 2001 Oct; 313(3):657-70. PubMed ID: 11676546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.