These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27043180)
1. Near-criticality underlies the behavior of early tumor growth. Remy G; Cluzel P Phys Biol; 2016 Apr; 13(2):026005. PubMed ID: 27043180 [TBL] [Abstract][Full Text] [Related]
2. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model. Albano G; Giorno V; Román-Román P; Torres-Ruiz F Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900 [TBL] [Abstract][Full Text] [Related]
3. Spatial stochastic models for cancer initiation and progression. Komarova NL Bull Math Biol; 2006 Oct; 68(7):1573-99. PubMed ID: 16832734 [TBL] [Abstract][Full Text] [Related]
4. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models. Conolly RB; Kimbell JS Toxicol Appl Pharmacol; 1994 Feb; 124(2):284-95. PubMed ID: 8122275 [TBL] [Abstract][Full Text] [Related]
5. Comment on "correlated noise in a logistic growth model". Behera A; O'Rourke SF Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):013901; discussion 013902. PubMed ID: 18351900 [TBL] [Abstract][Full Text] [Related]
6. Stochastic models of tumor growth and the probability of elimination by cytotoxic cells. Merrill SJ J Math Biol; 1984; 20(3):305-20. PubMed ID: 6502031 [TBL] [Abstract][Full Text] [Related]
7. Power-law correlated processes with asymmetric distributions. Podobnik B; Ivanov PCh; Jazbinsek V; Trontelj Z; Stanley HE; Grosse I Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):025104. PubMed ID: 15783366 [TBL] [Abstract][Full Text] [Related]
8. On the MVK stochastic carcinogenesis model with Erlang distributed cell life lengths. Zheng Q Risk Anal; 1995 Aug; 15(4):495-502. PubMed ID: 7480949 [TBL] [Abstract][Full Text] [Related]
9. Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation. Laforge B; Guez D; Martinez M; Kupiec JJ Prog Biophys Mol Biol; 2005 Sep; 89(1):93-120. PubMed ID: 15826673 [TBL] [Abstract][Full Text] [Related]
10. Towards a Mathematical Formalism for Semi-stochastic Cell-Level Computational Modeling of Tumor Initiation. Vermolen FJ; Meijden RP; Es Mv; Gefen A; Weihs D Ann Biomed Eng; 2015 Jul; 43(7):1680-94. PubMed ID: 25670322 [TBL] [Abstract][Full Text] [Related]
11. Probability dynamics of a repopulating tumor in case of fractionated external radiotherapy. Stavreva N; Stavrev P; Fallone BG Phys Med; 2009 Dec; 25(4):181-91. PubMed ID: 19345599 [TBL] [Abstract][Full Text] [Related]
12. Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Galle J; Loeffler M; Drasdo D Biophys J; 2005 Jan; 88(1):62-75. PubMed ID: 15475585 [TBL] [Abstract][Full Text] [Related]
13. Stochastic model for tumor growth with immunization. Bose T; Trimper S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051903. PubMed ID: 19518476 [TBL] [Abstract][Full Text] [Related]
14. Stochastic Gompertz model of tumour cell growth. Lo CF J Theor Biol; 2007 Sep; 248(2):317-21. PubMed ID: 17555768 [TBL] [Abstract][Full Text] [Related]
15. A stochastic model in tumor growth. Albano G; Giorno V J Theor Biol; 2006 Sep; 242(2):329-36. PubMed ID: 16620871 [TBL] [Abstract][Full Text] [Related]
16. Cell-cycle times and the tumour control probability. Maler A; Lutscher F Math Med Biol; 2010 Dec; 27(4):313-42. PubMed ID: 19966342 [TBL] [Abstract][Full Text] [Related]
17. [System dynamics of induced cell proliferation within the framework of a branching stochastic process model. II. Characteristics of the temporal organization of the cell cycle]. Ianev NM; Iakovlev AIu Tsitologiia; 1983 Jul; 25(7):818-26. PubMed ID: 6623638 [TBL] [Abstract][Full Text] [Related]
18. Cellular invasion without cellular motility in a stochastic growth model. Smolle J; Hofmann-Wellenhof R; Fink-Puches R Anal Cell Pathol; 1996 Jan; 10(1):37-43. PubMed ID: 8789268 [TBL] [Abstract][Full Text] [Related]
19. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models. Block GL; Allen LJ Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427 [TBL] [Abstract][Full Text] [Related]
20. [Dynamics of systems with induced cell proliferation within the framework of a branching stochastic process model. I. The number of cell generations induced to proliferate]. Iakovlev AIu; Ianev N Tsitologiia; 1980 Aug; 22(8):945-53. PubMed ID: 7423611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]