BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 27043181)

  • 1. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.
    Kamkaew A; Chen F; Zhan Y; Majewski RL; Cai W
    ACS Nano; 2016 Apr; 10(4):3918-35. PubMed ID: 27043181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles.
    Tang Y; Hu J; Elmenoufy AH; Yang X
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12261-9. PubMed ID: 25974980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment.
    Hu J; Tang Y; Elmenoufy AH; Xu H; Cheng Z; Yang X
    Small; 2015 Nov; 11(44):5860-87. PubMed ID: 26398119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications.
    Sun W; Zhou Z; Pratx G; Chen X; Chen H
    Theranostics; 2020; 10(3):1296-1318. PubMed ID: 31938066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon excitation nanoparticles for photodynamic therapy.
    Shen Y; Shuhendler AJ; Ye D; Xu JJ; Chen HY
    Chem Soc Rev; 2016 Dec; 45(24):6725-6741. PubMed ID: 27711672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy.
    Sengar P; Juárez P; Verdugo-Meza A; Arellano DL; Jain A; Chauhan K; Hirata GA; Fournier PGJ
    J Nanobiotechnology; 2018 Feb; 16(1):19. PubMed ID: 29482561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy.
    Micheletto MC; Guidelli ÉJ; Costa-Filho AJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2289-2302. PubMed ID: 33405500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics.
    Chuang YC; Chu CH; Cheng SH; Liao LD; Chu TS; Chen NT; Paldino A; Hsia Y; Chen CT; Lo LW
    Theranostics; 2020; 10(15):6758-6773. PubMed ID: 32550902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy.
    Meng Z; Hou W; Zhou H; Zhou L; Chen H; Wu C
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29251383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocomposites for X-Ray Photodynamic Therapy.
    Gadzhimagomedova Z; Zolotukhin P; Kit O; Kirsanova D; Soldatov A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using X-rays in photodynamic therapy: an overview.
    Larue L; Ben Mihoub A; Youssef Z; Colombeau L; Acherar S; André JC; Arnoux P; Baros F; Vermandel M; Frochot C
    Photochem Photobiol Sci; 2018 Nov; 17(11):1612-1650. PubMed ID: 29938265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect.
    Bulin AL; Vasil'ev A; Belsky A; Amans D; Ledoux G; Dujardin C
    Nanoscale; 2015 Mar; 7(13):5744-51. PubMed ID: 25746211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NaYbF
    Zhang JY; Chen S; Wang P; Jiang DJ; Ban DX; Zhong NZ; Jiang GC; Li H; Hu Z; Xiao JR; Zhang ZG; Cao WW
    Nanoscale; 2017 Feb; 9(8):2706-2710. PubMed ID: 28191573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment.
    Zhu Z; Liu Q; Zhu K; Wang K; Lin L; Chen Y; Shao F; Qian R; Song Y; Gao Y; Yang B; Jiang D; Lan X; An R
    Acta Biomater; 2023 Sep; 167():519-533. PubMed ID: 37328041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses.
    He L; Yu X; Li W
    ACS Nano; 2022 Dec; 16(12):19691-19721. PubMed ID: 36378555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming the Achilles' heel of photodynamic therapy.
    Fan W; Huang P; Chen X
    Chem Soc Rev; 2016 Nov; 45(23):6488-6519. PubMed ID: 27722560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy.
    Abdurahman R; Yang CX; Yan XP
    Chem Commun (Camb); 2016 Nov; 52(90):13303-13306. PubMed ID: 27782263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nano-carrier-mediated nuclear targeting.
    Ling D; Bae BC; Park W; Na K
    Biomaterials; 2012 Jul; 33(21):5478-86. PubMed ID: 22560197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.
    Liang L; Lu Y; Zhang R; Care A; Ortega TA; Deyev SM; Qian Y; Zvyagin AV
    Acta Biomater; 2017 Mar; 51():461-470. PubMed ID: 28063989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.