BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 27043210)

  • 1. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive assessment of cancer missense mutation clustering in protein structures.
    Kamburov A; Lawrence MS; Polak P; Leshchiner I; Lage K; Golub TR; Lander ES; Getz G
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5486-95. PubMed ID: 26392535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying mutation specific cancer pathways using a structurally resolved protein interaction network.
    Engin HB; Hofree M; Carter H
    Pac Symp Biocomput; 2015; 20():84-95. PubMed ID: 25592571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant p53 accumulation in human breast cancer is not an intrinsic property or dependent on structural or functional disruption but is regulated by exogenous stress and receptor status.
    Bouchalova P; Nenutil R; Muller P; Hrstka R; Appleyard MV; Murray K; Jordan LB; Purdie CA; Quinlan P; Thompson AM; Vojtesek B; Coates PJ
    J Pathol; 2014 Jul; 233(3):238-46. PubMed ID: 24687952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pan-Cancer Catalogue of Cancer Driver Protein Interaction Interfaces.
    Porta-Pardo E; Garcia-Alonso L; Hrabe T; Dopazo J; Godzik A
    PLoS Comput Biol; 2015 Oct; 11(10):e1004518. PubMed ID: 26485003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-molecule binding sites to explore protein-protein interactions in the cancer proteome.
    Xu D; Jalal SI; Sledge GW; Meroueh SO
    Mol Biosyst; 2016 Oct; 12(10):3067-87. PubMed ID: 27452673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the
    Chitrala KN; Nagarkatti M; Nagarkatti P; Yeguvapalli S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.
    Mercatanti A; Lodovichi S; Cervelli T; Galli A
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census.
    Malhotra S; Alsulami AF; Heiyun Y; Ochoa BM; Jubb H; Forbes S; Blundell TL
    PLoS One; 2019; 14(7):e0219935. PubMed ID: 31323058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TP53 mutations, expression and interaction networks in human cancers.
    Wang X; Sun Q
    Oncotarget; 2017 Jan; 8(1):624-643. PubMed ID: 27880943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A homologous mapping method for three-dimensional reconstruction of protein networks reveals disease-associated mutations.
    Huang SH; Lo YS; Luo YC; Tseng YY; Yang JM
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):13. PubMed ID: 29560828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of germline and somatic missense variations on drug binding sites.
    Yan C; Pattabiraman N; Goecks J; Lam P; Nayak A; Pan Y; Torcivia-Rodriguez J; Voskanian A; Wan Q; Mazumder R
    Pharmacogenomics J; 2017 Mar; 17(2):128-136. PubMed ID: 26810135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computed cancer interactome explains the effects of somatic mutations in cancers.
    Zhang J; Pei J; Durham J; Bos T; Cong Q
    Protein Sci; 2022 Dec; 31(12):e4479. PubMed ID: 36261849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.