These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27043267)

  • 41. Discovery of N-indanyl benzamides as potent RORγt inverse agonists.
    Tian J; Sun N; Yu M; Gu X; Xie Q; Shao L; Liu J; Liu L; Wang Y
    Eur J Med Chem; 2019 Apr; 167():37-48. PubMed ID: 30743096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Mechanism of Action of RORγt Agonists and Inverse Agonists: Insights from Molecular Dynamics Simulation.
    Sun N; Yuan C; Ma X; Wang Y; Gu X; Fu W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30513894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of novel quinazolinedione derivatives as RORγt inverse agonist.
    Fukase Y; Sato A; Tomata Y; Ochida A; Kono M; Yonemori K; Koga K; Okui T; Yamasaki M; Fujitani Y; Nakagawa H; Koyama R; Nakayama M; Skene R; Sang BC; Hoffman I; Shirai J; Yamamoto S
    Bioorg Med Chem; 2018 Feb; 26(3):721-736. PubMed ID: 29342416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discovery of 3-Cyano- N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 H-pyrrolo[2,3- b]pyridin-5-yl)benzamide: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist.
    Schnute ME; Wennerstål M; Alley J; Bengtsson M; Blinn JR; Bolten CW; Braden T; Bonn T; Carlsson B; Caspers N; Chen M; Choi C; Collis LP; Crouse K; Färnegårdh M; Fennell KF; Fish S; Flick AC; Goos-Nilsson A; Gullberg H; Harris PK; Heasley SE; Hegen M; Hromockyj AE; Hu X; Husman B; Janosik T; Jones P; Kaila N; Kallin E; Kauppi B; Kiefer JR; Knafels J; Koehler K; Kruger L; Kurumbail RG; Kyne RE; Li W; Löfstedt J; Long SA; Menard CA; Mente S; Messing D; Meyers MJ; Napierata L; Nöteberg D; Nuhant P; Pelc MJ; Prinsen MJ; Rhönnstad P; Backström-Rydin E; Sandberg J; Sandström M; Shah F; Sjöberg M; Sundell A; Taylor AP; Thorarensen A; Trujillo JI; Trzupek JD; Unwalla R; Vajdos FF; Weinberg RA; Wood DC; Xing L; Zamaratski E; Zapf CW; Zhao Y; Wilhelmsson A; Berstein G
    J Med Chem; 2018 Dec; 61(23):10415-10439. PubMed ID: 30130103
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfoximines as potent RORγ inverse agonists.
    Ouvry G; Bihl F; Bouix-Peter C; Christin O; Defoin-Platel C; Deret S; Feret C; Froude D; Hacini-Rachinel F; Harris CS; Hervouet C; Lafitte G; Luzy AP; Musicki B; Orfila D; Parnet V; Pascau C; Pascau J; Pierre R; Raffin C; Rossio P; Spiesse D; Taquet N; Thoreau E; Vatinel R; Vial E; Hennequin LF
    Bioorg Med Chem Lett; 2018 May; 28(8):1269-1273. PubMed ID: 29571573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of novel silicon-containing inverse agonists of retinoic acid receptor-related orphan receptors.
    Toyama H; Nakamura M; Nakamura M; Matsumoto Y; Nakagomi M; Hashimoto Y
    Bioorg Med Chem; 2014 Mar; 22(6):1948-59. PubMed ID: 24559867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists.
    Meijer FA; Doveston RG; de Vries RMJM; Vos GM; Vos AAA; Leysen S; Scheepstra M; Ottmann C; Milroy LG; Brunsveld L
    J Med Chem; 2020 Jan; 63(1):241-259. PubMed ID: 31821760
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment.
    Noguchi M; Nomura A; Murase K; Doi S; Yamaguchi K; Hirata K; Shiozaki M; Hirashima S; Kotoku M; Yamaguchi T; Katsuda Y; Steensma R; Li X; Tao H; Tse B; Fenn M; Babine R; Bradley E; Crowe P; Thacher S; Adachi T; Kamada M
    Genes Cells; 2017 Jun; 22(6):535-551. PubMed ID: 28493531
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonists for the treatment of autoimmune diseases.
    Sun N; Ma X; Zhou K; Zhu C; Cao Z; Wang Y; Xu J; Fu W
    Eur J Med Chem; 2020 Feb; 187():111984. PubMed ID: 31881455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.
    Zhang W; Zhang J; Fang L; Zhou L; Wang S; Xiang Z; Li Y; Wisely B; Zhang G; An G; Wang Y; Leung S; Zhong Z
    Mol Pharmacol; 2012 Oct; 82(4):583-90. PubMed ID: 22700697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design, Synthesis, and Biological Evaluation of Retinoic Acid-Related Orphan Receptor γt (RORγt) Agonist Structure-Based Functionality Switching Approach from In House RORγt Inverse Agonist to RORγt Agonist.
    Yukawa T; Nara Y; Kono M; Sato A; Oda T; Takagi T; Sato T; Banno Y; Taya N; Imada T; Shiokawa Z; Negoro N; Kawamoto T; Koyama R; Uchiyama N; Skene R; Hoffman I; Chen CH; Sang B; Snell G; Katsuyama R; Yamamoto S; Shirai J
    J Med Chem; 2019 Feb; 62(3):1167-1179. PubMed ID: 30652849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases.
    Zou H; Yang N; Zhang X; Chen HW
    Biochem Pharmacol; 2022 Feb; 196():114725. PubMed ID: 34384758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HDX-MS reveals structural determinants for RORγ hyperactivation by synthetic agonists.
    Strutzenberg TS; Garcia-Ordonez RD; Novick SJ; Park H; Chang MR; Doebellin C; He Y; Patouret R; Kamenecka TM; Griffin PR
    Elife; 2019 Jun; 8():. PubMed ID: 31172947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ.
    Wang Y; Kumar N; Nuhant P; Cameron MD; Istrate MA; Roush WR; Griffin PR; Burris TP
    ACS Chem Biol; 2010 Nov; 5(11):1029-34. PubMed ID: 20735016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prospero-related homeobox 1 (Prox1) functions as a novel modulator of retinoic acid-related orphan receptors α- and γ-mediated transactivation.
    Takeda Y; Jetten AM
    Nucleic Acids Res; 2013 Aug; 41(14):6992-7008. PubMed ID: 23723244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease.
    Jetten AM; Takeda Y; Slominski A; Kang HS
    Curr Opin Toxicol; 2018 Apr; 8():66-80. PubMed ID: 29568812
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement.
    Strutzenberg TS; Zhu Y; Novick SJ; Garcia-Ordonez RD; Doebelin C; He Y; Chang MR; Kamenecka TM; Edwards DP; Griffin PR
    J Mol Biol; 2021 Nov; 433(22):167258. PubMed ID: 34547329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of 1,3-dihydro-2,1,3-benzothiadiazole 2,2-dioxide analogs as new RORC modulators.
    Muegge I; Collin D; Cook B; Hill-Drzewi M; Horan J; Kugler S; Labadia M; Li X; Smith L; Zhang Y
    Bioorg Med Chem Lett; 2015 May; 25(9):1892-5. PubMed ID: 25840886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent progress on nuclear receptor RORγ modulators.
    Cyr P; Bronner SM; Crawford JJ
    Bioorg Med Chem Lett; 2016 Sep; 26(18):4387-4393. PubMed ID: 27542308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovery and pharmacological evaluation of indole derivatives as potent and selective RORγt inverse agonist for multiple autoimmune conditions.
    Shaikh NS; Iyer JP; Munot YS; Mukhopadhyay PP; Raje AA; Nagaraj R; Jamdar V; Gavhane R; Lohote M; Sherkar P; Bala M; Petla R; Meru A; Umrani D; Rouduri S; Joshi S; Reddy S; Kandikere V; Bhuniya D; Kulkarni B; Mookhtiar KA
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2208-2217. PubMed ID: 31272795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.