These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 27043426)
1. Comparison of Image Processing Techniques for Nonviable Tissue Quantification in Late Gadolinium Enhancement Cardiac Magnetic Resonance Images. Carminati MC; Boniotti C; Fusini L; Andreini D; Pontone G; Pepi M; Caiani EG J Thorac Imaging; 2016 May; 31(3):168-76. PubMed ID: 27043426 [TBL] [Abstract][Full Text] [Related]
2. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive evaluation of macroscopic and microscopic myocardial fibrosis by cardiac MR: intra-individual comparison of gadobutrol versus gadoterate meglumine. Rahsepar AA; Ghasemiesfe A; Suwa K; Dolan RS; Shehata ML; Korell MJ; Naresh NK; Markl M; Collins JD; Carr JC Eur Radiol; 2019 Aug; 29(8):4357-4367. PubMed ID: 30617490 [TBL] [Abstract][Full Text] [Related]
4. Automated left ventricle segmentation in late gadolinium-enhanced MRI for objective myocardial scar assessment. Tao Q; Piers SR; Lamb HJ; van der Geest RJ J Magn Reson Imaging; 2015 Aug; 42(2):390-9. PubMed ID: 25408195 [TBL] [Abstract][Full Text] [Related]
5. Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images. Moccia S; Banali R; Martini C; Muscogiuri G; Pontone G; Pepi M; Caiani EG MAGMA; 2019 Apr; 32(2):187-195. PubMed ID: 30460430 [TBL] [Abstract][Full Text] [Related]
6. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar. Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661 [TBL] [Abstract][Full Text] [Related]
7. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net). Zabihollahy F; Rajchl M; White JA; Ukwatta E Med Phys; 2020 Apr; 47(4):1645-1655. PubMed ID: 31955415 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images. Karim R; Bhagirath P; Claus P; James Housden R; Chen Z; Karimaghaloo Z; Sohn HM; Lara Rodríguez L; Vera S; Albà X; Hennemuth A; Peitgen HO; Arbel T; Gonzàlez Ballester MA; Frangi AF; Götte M; Razavi R; Schaeffter T; Rhode K Med Image Anal; 2016 May; 30():95-107. PubMed ID: 26891066 [TBL] [Abstract][Full Text] [Related]
9. Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar. Francis R; Kellman P; Kotecha T; Baggiano A; Norrington K; Martinez-Naharro A; Nordin S; Knight DS; Rakhit RD; Lockie T; Hawkins PN; Moon JC; Hausenloy DJ; Xue H; Hansen MS; Fontana M J Cardiovasc Magn Reson; 2017 Nov; 19(1):91. PubMed ID: 29162123 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long- and short-axis information. Wei D; Sun Y; Ong SH; Chai P; Teo LL; Low AF Med Image Anal; 2013 Aug; 17(6):685-97. PubMed ID: 23562069 [TBL] [Abstract][Full Text] [Related]
11. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification. van der Velde N; Hassing HC; Bakker BJ; Wielopolski PA; Lebel RM; Janich MA; Kardys I; Budde RPJ; Hirsch A Eur Radiol; 2021 Jun; 31(6):3846-3855. PubMed ID: 33219845 [TBL] [Abstract][Full Text] [Related]
12. Diagnostic accuracy of late iodine-enhancement dual-energy computed tomography for the detection of chronic myocardial infarction compared with late gadolinium-enhancement 3-T magnetic resonance imaging. Wichmann JL; Bauer RW; Doss M; Stock W; Lehnert T; Bodelle B; Frellesen C; Vogl TJ; Kerl JM Invest Radiol; 2013 Dec; 48(12):851-6. PubMed ID: 23907104 [TBL] [Abstract][Full Text] [Related]
13. Myocardial infarct sizing by late gadolinium-enhanced MRI: Comparison of manual, full-width at half-maximum, and n-standard deviation methods. Zhang L; Huttin O; Marie PY; Felblinger J; Beaumont M; Chillou C; Girerd N; Mandry D J Magn Reson Imaging; 2016 Nov; 44(5):1206-1217. PubMed ID: 27096741 [TBL] [Abstract][Full Text] [Related]
14. Assessment of nonischemic fibrosis in hypertrophic cardiomyopathy: comparison of gadopentetate dimeglumine and gadobenate dimeglumine for enhanced cardiovascular magnetic resonance imaging. Rudolph A; von Knobelsdorff-Brenkenhoff F; Wassmuth R; Prothmann M; Utz W; Schulz-Menger J J Magn Reson Imaging; 2014 May; 39(5):1153-60. PubMed ID: 24151119 [TBL] [Abstract][Full Text] [Related]
15. An accurate and time-efficient deep learning-based system for automated segmentation and reporting of cardiac magnetic resonance-detected ischemic scar. Papetti DM; Van Abeelen K; Davies R; Menè R; Heilbron F; Perelli FP; Artico J; Seraphim A; Moon JC; Parati G; Xue H; Kellman P; Badano LP; Besozzi D; Nobile MS; Torlasco C Comput Methods Programs Biomed; 2023 Feb; 229():107321. PubMed ID: 36586175 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. Flett AS; Hasleton J; Cook C; Hausenloy D; Quarta G; Ariti C; Muthurangu V; Moon JC JACC Cardiovasc Imaging; 2011 Feb; 4(2):150-6. PubMed ID: 21329899 [TBL] [Abstract][Full Text] [Related]
17. Clinical evaluation of two dark blood methods of late gadolinium quantification of ischemic scar. Foley JRJ; Broadbent DA; Fent GJ; Garg P; Brown LAE; Chew PG; Dobson LE; Swoboda PP; Plein S; Higgins DM; Greenwood JP J Magn Reson Imaging; 2019 Jul; 50(1):146-152. PubMed ID: 30604492 [TBL] [Abstract][Full Text] [Related]
18. Extracellular volume-guided late gadolinium enhancement analysis for non-ischemic cardiomyopathy: The Women's Interagency HIV Study. Kato Y; Kizer JR; Ostovaneh MR; Lazar J; Peng Q; van der Geest RJ; Lima JAC; Ambale-Venkatesh B BMC Med Imaging; 2021 Jul; 21(1):116. PubMed ID: 34315432 [TBL] [Abstract][Full Text] [Related]
19. Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach. Rutz T; Piccini D; Coppo S; Chaptinel J; Ginami G; Vincenti G; Stuber M; Schwitter J Int J Cardiovasc Imaging; 2016 Dec; 32(12):1735-1744. PubMed ID: 27549804 [TBL] [Abstract][Full Text] [Related]
20. Does the presence of Q waves on the EKG accurately predict prior myocardial infarction when compared to cardiac magnetic resonance using late gadolinium enhancement? A cross-population study of noninfarct vs infarct patients. Nadour W; Doyle M; Williams RB; Rayarao G; Grant SB; Thompson DV; Yamrozik JA; Biederman RW Heart Rhythm; 2014 Nov; 11(11):2018-26. PubMed ID: 25063692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]