These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 27043630)
1. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody. Rohrbeck A; Fühner V; Schröder A; Hagemann S; Vu XK; Berndt S; Hust M; Pich A; Just I Toxins (Basel); 2016 Apr; 8(4):100. PubMed ID: 27043630 [TBL] [Abstract][Full Text] [Related]
2. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. Genth H; Gerhard R; Maeda A; Amano M; Kaibuchi K; Aktories K; Just I J Biol Chem; 2003 Aug; 278(31):28523-7. PubMed ID: 12750364 [TBL] [Abstract][Full Text] [Related]
3. ADP-ribosylation of Rho proteins by Clostridium botulinum exoenzyme C3 is influenced by phosphorylation of Rho-associated factors. Fritz G; Aktories K Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):133-9. PubMed ID: 8198524 [TBL] [Abstract][Full Text] [Related]
4. ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady-state GTPase activities of recombinant rhoA and rhoB proteins. Mohr C; Koch G; Just I; Aktories K FEBS Lett; 1992 Feb; 297(1-2):95-9. PubMed ID: 1551445 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. Tominaga T; Sugie K; Hirata M; Morii N; Fukata J; Uchida A; Imura H; Narumiya S J Cell Biol; 1993 Mar; 120(6):1529-37. PubMed ID: 7680658 [TBL] [Abstract][Full Text] [Related]
6. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
7. Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q. Rohrbeck A; Kolbe T; Hagemann S; Genth H; Just I FEBS J; 2012 Aug; 279(15):2657-71. PubMed ID: 22621765 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. Just I; Mohr C; Schallehn G; Menard L; Didsbury JR; Vandekerckhove J; van Damme J; Aktories K J Biol Chem; 1992 May; 267(15):10274-80. PubMed ID: 1587816 [TBL] [Abstract][Full Text] [Related]
9. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Yamamoto M; Marui N; Sakai T; Morii N; Kozaki S; Ikai K; Imamura S; Narumiya S Oncogene; 1993 Jun; 8(6):1449-55. PubMed ID: 8502473 [TBL] [Abstract][Full Text] [Related]
10. Recognition of RhoA by Clostridium botulinum C3 exoenzyme. Wilde C; Genth H; Aktories K; Just I J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216 [TBL] [Abstract][Full Text] [Related]
11. Differentiation-induced increase in Clostridium botulinum C3 exoenzyme-catalyzed ADP-ribosylation of the small GTP-binding protein Rho. Fritz G; Just I; Wollenberg P; Aktories K Eur J Biochem; 1994 Aug; 223(3):909-16. PubMed ID: 8055968 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of Clostridium botulinum C3-catalysed ADP-ribosylation of recombinant rhoA by sodium dodecyl sulfate. Just I; Mohr C; Habermann B; Koch G; Aktories K Biochem Pharmacol; 1993 Apr; 45(7):1409-16. PubMed ID: 8385945 [TBL] [Abstract][Full Text] [Related]
13. The intermediate filament protein vimentin is essential for axonotrophic effects of Clostridium botulinum C3 exoenzyme. Adolf A; Leondaritis G; Rohrbeck A; Eickholt BJ; Just I; Ahnert-Hilger G; Höltje M J Neurochem; 2016 Oct; 139(2):234-244. PubMed ID: 27419376 [TBL] [Abstract][Full Text] [Related]
14. Guanine nucleotide-dependent ADP-ribosylation of soluble rho catalyzed by Clostridium botulinum C3 ADP-ribosyltransferase. Isolation and characterization of a newly recognized form of rhoA. Williamson KC; Smith LA; Moss J; Vaughan M J Biol Chem; 1990 Dec; 265(34):20807-12. PubMed ID: 2174426 [TBL] [Abstract][Full Text] [Related]
15. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Barth H; Hofmann F; Olenik C; Just I; Aktories K Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA. Wilde C; Barth H; Sehr P; Han L; Schmidt M; Just I; Aktories K J Biol Chem; 2002 Apr; 277(17):14771-6. PubMed ID: 11847234 [TBL] [Abstract][Full Text] [Related]
19. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure. Toda A; Tsurumura T; Yoshida T; Tsumori Y; Tsuge H J Biol Chem; 2015 Aug; 290(32):19423-32. PubMed ID: 26067270 [TBL] [Abstract][Full Text] [Related]
20. ADP-ribosylation and de-ADP-ribosylation of the rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotides and pH. Habermann B; Mohr C; Just I; Aktories K Biochim Biophys Acta; 1991 Apr; 1077(3):253-8. PubMed ID: 1827595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]