These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 27043706)
21. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2. Naldoni A; Fabbri F; Altomare M; Marelli M; Psaro R; Selli E; Salviati G; Dal Santo V Phys Chem Chem Phys; 2015 Feb; 17(7):4864-9. PubMed ID: 25607570 [TBL] [Abstract][Full Text] [Related]
22. The photoinduced formation of gold nanoparticles in a mesoporous titania gel monolith. Shen W; Liu F; Qiu J; Yao B Nanotechnology; 2009 Mar; 20(10):105605. PubMed ID: 19417525 [TBL] [Abstract][Full Text] [Related]
23. Excited-state dynamics of size-dependent colloidal TiO2-Au nanocomposites. Karam TE; Khoury RA; Haber LH J Chem Phys; 2016 Mar; 144(12):124704. PubMed ID: 27036472 [TBL] [Abstract][Full Text] [Related]
24. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Liu WL; Lin FC; Yang YC; Huang CH; Gwo S; Huang MH; Huang JS Nanoscale; 2013 Sep; 5(17):7953-62. PubMed ID: 23860734 [TBL] [Abstract][Full Text] [Related]
25. Surface plasmon-driven water reduction: gold nanoparticle size matters. Qian K; Sweeny BC; Johnston-Peck AC; Niu W; Graham JO; DuChene JS; Qiu J; Wang YC; Engelhard MH; Su D; Stach EA; Wei WD J Am Chem Soc; 2014 Jul; 136(28):9842-5. PubMed ID: 24972055 [TBL] [Abstract][Full Text] [Related]
26. Plasmonic heating assisted deposition of bare Au nanoparticles on titania nanoshells. Alessandri I J Colloid Interface Sci; 2010 Nov; 351(2):576-9. PubMed ID: 20800851 [TBL] [Abstract][Full Text] [Related]
27. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
28. Simultaneous Hot Electron and Hole Injection upon Excitation of Gold Surface Plasmon. Hattori Y; Abdellah M; Meng J; Zheng K; Sá J J Phys Chem Lett; 2019 Jun; 10(11):3140-3146. PubMed ID: 31117685 [TBL] [Abstract][Full Text] [Related]
29. A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles. Morton SM; Jensen L J Chem Phys; 2010 Aug; 133(7):074103. PubMed ID: 20726631 [TBL] [Abstract][Full Text] [Related]
30. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Mubeen S; Hernandez-Sosa G; Moses D; Lee J; Moskovits M Nano Lett; 2011 Dec; 11(12):5548-52. PubMed ID: 22040462 [TBL] [Abstract][Full Text] [Related]
31. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications. Scuderi V; Impellizzeri G; Romano L; Scuderi M; Brundo MV; Bergum K; Zimbone M; Sanz R; Buccheri MA; Simone F; Nicotra G; Svensson BG; Grimaldi MG; Privitera V Nanoscale; 2014 Oct; 6(19):11189-95. PubMed ID: 25125044 [TBL] [Abstract][Full Text] [Related]
32. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
33. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. Nam SH; Kim SW; An YJ J Appl Toxicol; 2013 Oct; 33(10):1061-9. PubMed ID: 23161381 [TBL] [Abstract][Full Text] [Related]
35. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Seh ZW; Liu S; Low M; Zhang SY; Liu Z; Mlayah A; Han MY Adv Mater; 2012 May; 24(17):2310-4. PubMed ID: 22467121 [TBL] [Abstract][Full Text] [Related]
36. Optical Hot Spot Generation by the Plasmonic Coupling of Au Nanoparticles in the Nanospaces of Mesoporous Titanium(IV) Oxide. Akita A; Fujishima M; Tada H Langmuir; 2021 Feb; 37(5):1838-1842. PubMed ID: 33513306 [TBL] [Abstract][Full Text] [Related]
37. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO Lee MG; Moon CW; Park H; Sohn W; Kang SB; Lee S; Choi KJ; Jang HW Small; 2017 Oct; 13(37):. PubMed ID: 28834195 [TBL] [Abstract][Full Text] [Related]
38. A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Jiang L; Liang X; You T; Yin P; Wang H; Guo L; Yang S Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():50-4. PubMed ID: 25699693 [TBL] [Abstract][Full Text] [Related]
39. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods. Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166 [TBL] [Abstract][Full Text] [Related]
40. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods. Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]