These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27043747)

  • 1. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.
    Bergquist AM; Choe JK; Strathmann TJ; Werth CJ
    Water Res; 2016 Jun; 96():177-87. PubMed ID: 27043747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate.
    Choe JK; Bergquist AM; Jeong S; Guest JS; Werth CJ; Strathmann TJ
    Water Res; 2015 Sep; 80():267-80. PubMed ID: 26005787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine.
    Huo X; Vanneste J; Cath TY; Strathmann TJ
    Water Res; 2020 May; 175():115688. PubMed ID: 32171095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment.
    Lehman SG; Badruzzaman M; Adham S; Roberts DJ; Clifford DA
    Water Res; 2008 Feb; 42(4-5):969-76. PubMed ID: 17936327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.
    Liu J; Choe JK; Sasnow Z; Werth CJ; Strathmann TJ
    Water Res; 2013 Jan; 47(1):91-101. PubMed ID: 23084116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of strong-base anion exchange O&M costs for hexavalent chromium treatment.
    Plummer S; Gorman C; Henrie T; Shimabuku K; Thompson R; Seidel C
    Water Res; 2018 Aug; 139():420-433. PubMed ID: 29709799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved brine recycling during nitrate removal using ion exchange.
    Bae BU; Jung YH; Han WW; Shin HS
    Water Res; 2002 Jul; 36(13):3330-40. PubMed ID: 12188132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine.
    Yang T; Doudrick K; Westerhoff P
    Water Res; 2013 Mar; 47(3):1299-307. PubMed ID: 23276425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alleviating the burden of ion exchange brine in water treatment: From operational strategies to brine management.
    Liu Z; Haddad M; Sauvé S; Barbeau B
    Water Res; 2021 Oct; 205():117728. PubMed ID: 34619606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving low-cost, highly selective nitrate removal with standard anion exchange resin by tuning recycled brine composition.
    Duan S; Tong T; Zheng S; Zhang X; Li S
    Water Res; 2020 Apr; 173():115571. PubMed ID: 32035280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate.
    Patel A; Zuo G; Lehman SG; Badruzzaman M; Clifford DA; Roberts DJ
    Water Res; 2008 Oct; 42(16):4291-8. PubMed ID: 18718630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.
    Li Q; Huang B; Chen X; Shi Y
    Water Res; 2015 May; 75():33-42. PubMed ID: 25746960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of resin loading on ion exchange equilibrium for removal of organic matter and inorganic ions.
    Pidoux L; Shorney-Darby H; Vaudevire E; Martijn B; Jarvis P; Carra I
    J Hazard Mater; 2022 Jun; 431():128530. PubMed ID: 35220125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin.
    Ebrahimi S; Roberts DJ
    J Hazard Mater; 2013 Nov; 262():539-44. PubMed ID: 24095993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling a novel ion exchange process for arsenic and nitrate removal.
    Kim J; Benjamin MM
    Water Res; 2004 Apr; 38(8):2053-62. PubMed ID: 15087186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water.
    Choe JK; Mehnert MH; Guest JS; Strathmann TJ; Werth CJ
    Environ Sci Technol; 2013 May; 47(9):4644-52. PubMed ID: 23484880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of NaCl on nitrate removal from ion-exchange spent brine in the membrane biofilm reactor (MBfR).
    Van Ginkel SW; Kim BO; Yang Z; Sittmann R; Sholin M; Micelli J; Rittmann BE
    Water Sci Technol; 2012; 65(1):100-4. PubMed ID: 22173412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denitrification of nitrate in regeneration waste brine using hybrid cation exchanger supported nanoscale zero-valent iron with/without palladium nanoparticles.
    Patra S; Pranudta A; Chanlek N; Nguyen TT; Nhat NH; El-Moselhy MM; Padungthon S
    Chemosphere; 2023 Jan; 310():136851. PubMed ID: 36244425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and impact of organics in an immersed membrane bioreactor applied to brine denitrification and ion exchange regeneration.
    McAdam EJ; Pawlett M; Judd SJ
    Water Res; 2010 Jan; 44(1):69-76. PubMed ID: 19775718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study.
    Hu Y; Boyer TH
    Water Res; 2017 May; 115():40-49. PubMed ID: 28259813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.