BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27043875)

  • 21. Response of Mytilus galloprovincialis (L.) to increasing seawater temperature and to marteliosis: metabolic and physiological parameters.
    Anestis A; Pörtner HO; Karagiannis D; Angelidis P; Staikou A; Michaelidis B
    Comp Biochem Physiol A Mol Integr Physiol; 2010 May; 156(1):57-66. PubMed ID: 20045485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter.
    Branco PC; Borges JC; Santos MF; Jensch Junior BE; da Silva JR
    Mar Environ Res; 2013 Dec; 92():95-101. PubMed ID: 24080411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal physiology of the common eelpout (Zoarces viviparus).
    Zakhartsev MV; De Wachter B; Sartoris FJ; Pörtner HO; Blust R
    J Comp Physiol B; 2003 Jul; 173(5):365-78. PubMed ID: 12774171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dose-dependent relationship between copper burden in female urchin gonads and developmental impairment of their offspring.
    Phillips NE; Rouchon AM
    Mar Environ Res; 2018 May; 136():120-125. PubMed ID: 29453134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of feeding frequency on consumption of food, absorption efficiency, and gonad production in the sea urchin Lytechinus variegatus.
    Lawrence JM; Plank LR; Lawrence AL
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Jan; 134(1):69-75. PubMed ID: 12507609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transcriptome of the NZ endemic sea urchin Kina (Evechinus chloroticus).
    Gillard GB; Garama DJ; Brown CM
    BMC Genomics; 2014 Jan; 15():45. PubMed ID: 24438054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii.
    Sandersfeld T; Davison W; Lamare MD; Knust R; Richter C
    J Exp Biol; 2015 Aug; 218(Pt 15):2373-81. PubMed ID: 26056241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus).
    Healy TM; Schulte PM
    Physiol Biochem Zool; 2012; 85(2):107-19. PubMed ID: 22418704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boreal and temperate trees show strong acclimation of respiration to warming.
    Reich PB; Sendall KM; Stefanski A; Wei X; Rich RL; Montgomery RA
    Nature; 2016 Mar; 531(7596):633-6. PubMed ID: 26982730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water temperature influences growth and gonad differentiation in European sea bass (Dicentrarchus labrax, L. 1758).
    Arfuso F; Guerrera MC; Fortino G; Fazio F; Santulli A; Piccione G
    Theriogenology; 2017 Jan; 88():145-151. PubMed ID: 27751603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.
    Xu W; Dang W; Geng J; Lu HL
    J Therm Biol; 2015 Oct; 53():119-24. PubMed ID: 26590464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius.
    Zhao C; Zhang L; Shi D; Ding J; Yin D; Sun J; Zhang B; Zhang L; Chang Y
    Ecotoxicol Environ Saf; 2018 Apr; 151():212-219. PubMed ID: 29353170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acclimation to low pH does not affect the thermal tolerance of
    Foo SA; Munari M; Gambi MC; Byrne M
    Biol Lett; 2022 Jun; 18(6):20220087. PubMed ID: 35642383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potential for cryopreserving larvae of the sea urchin, Evechinus chloroticus.
    Adams SL; Hessian PA; Mladenov PV
    Cryobiology; 2006 Feb; 52(1):139-45. PubMed ID: 16321369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis.
    Jayasundara N; Somero GN
    J Exp Biol; 2013 Jun; 216(Pt 11):2111-21. PubMed ID: 23678101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change.
    Dahlhoff EP; Fearnley SL; Bruce DA; Gibbs AG; Stoneking R; McMillan DM; Deiner K; Smiley JT; Rank NE
    Physiol Biochem Zool; 2008; 81(6):718-32. PubMed ID: 18956974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.