These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27043966)

  • 21. A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms.
    Shi P; Zhong J; Rampun A; Wang H
    Comput Biol Med; 2018 May; 96():178-188. PubMed ID: 29597143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic detection of pectoral muscle using average gradient and shape based feature.
    Chakraborty J; Mukhopadhyay S; Singla V; Khandelwal N; Bhattacharyya P
    J Digit Imaging; 2012 Jun; 25(3):387-99. PubMed ID: 22006275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic Pectoral Muscle Region Segmentation in Mammograms Using Genetic Algorithm and Morphological Selection.
    Shen R; Yan K; Xiao F; Chang J; Jiang C; Zhou K
    J Digit Imaging; 2018 Oct; 31(5):680-691. PubMed ID: 29582242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pectoral muscle detection in mammograms based on polar coordinates and the shortest path.
    Cardoso JS; Domingues I; Amaral I; Moreira I; Passarinho P; Santa Comba J; Correia R; Cardoso MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4781-4. PubMed ID: 21096253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computerized nipple identification for multiple image analysis in computer-aided diagnosis.
    Zhou C; Chan HP; Paramagul C; Roubidoux MA; Sahiner B; Hadjiiski LM; Petrick N
    Med Phys; 2004 Oct; 31(10):2871-82. PubMed ID: 15543797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic extraction of pectoral muscle in the MLO view of mammograms.
    Feudjio CK; Klein J; Tiedeu A; Colot O
    Phys Med Biol; 2013 Dec; 58(23):8493-515. PubMed ID: 24240510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency.
    Chen S; Bennett DL; Colditz GA; Jiang S
    Cancer Causes Control; 2024 Jan; 35(1):185-191. PubMed ID: 37676616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Location of mammograms ROI's and reduction of false-positive.
    Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA
    Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive hysteresis thresholding segmentation technique for localizing the breast masses in the curve stitching domain.
    Mughal B; Muhammad N; Sharif M
    Int J Med Inform; 2019 Jun; 126():26-34. PubMed ID: 31029261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radon-domain detection of the nipple and the pectoral muscle in mammograms.
    Kinoshita SK; Azevedo-Marques PM; Pereira RR; Rodrigues JA; Rangayyan RM
    J Digit Imaging; 2008 Mar; 21(1):37-49. PubMed ID: 17436047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An anatomically oriented breast coordinate system for mammogram analysis.
    Brandt SS; Karemore G; Karssemeijer N; Nielsen M
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1841-51. PubMed ID: 21609879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid segmentation of mass in mammograms using template matching and dynamic programming.
    Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC
    Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel automatic suspicious mass regions identification using Havrda & Charvat entropy and Otsu's N thresholding.
    Kurt B; Nabiyev VV; Turhan K
    Comput Methods Programs Biomed; 2014 May; 114(3):349-60. PubMed ID: 24681199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technique for preprocessing of digital mammogram.
    Maitra IK; Nag S; Bandyopadhyay SK
    Comput Methods Programs Biomed; 2012 Aug; 107(2):175-88. PubMed ID: 21669471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breast mass segmentation in mammography using plane fitting and dynamic programming.
    Song E; Jiang L; Jin R; Zhang L; Yuan Y; Li Q
    Acad Radiol; 2009 Jul; 16(7):826-35. PubMed ID: 19362024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of pectoral muscle based on topographic map and shape-shifting silhouette.
    Mughal B; Muhammad N; Sharif M; Rehman A; Saba T
    BMC Cancer; 2018 Aug; 18(1):778. PubMed ID: 30068304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer.
    Almalki YE; Soomro TA; Irfan M; Alduraibi SK; Ali A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A New Breast Border Extraction and Contrast Enhancement Technique with Digital Mammogram Images for Improved Detection of Breast Cancer.
    Hazarika M; Mahanta LB
    Asian Pac J Cancer Prev; 2018 Aug; 19(8):2141-2148. PubMed ID: 30139217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Standardised or individualised X-ray tube angle for mediolateral oblique projection in digital mammography?
    Moshina N; Bjørnson EW; Holen ÅS; Larsen M; Hansestad B; Tøsdal L; Hofvind S
    Radiography (Lond); 2022 Aug; 28(3):772-778. PubMed ID: 35387753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated breast segmentation of fat and water MR images using dynamic programming.
    Rosado-Toro JA; Barr T; Galons JP; Marron MT; Stopeck A; Thomson C; Thompson P; Carroll D; Wolf E; Altbach MI; Rodríguez JJ
    Acad Radiol; 2015 Feb; 22(2):139-48. PubMed ID: 25572926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.