These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27044047)

  • 1. Enzyme-Free Dissociation of Neurospheres by a Microfluidic Chip-Based Method.
    Lin CH; Chang HC; Lee DC; Chiu IM; Hsu CH
    Methods Mol Biol; 2016; 1516():289-297. PubMed ID: 27044047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of neurosphere formation in neural stem/progenitor cells by acrylamide.
    Chen JH; Lee DC; Chen MS; Ko YC; Chiu IM
    Cell Transplant; 2015; 24(5):779-96. PubMed ID: 24380568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogrid--a microfluidic device for large-scale enzyme-free dissociation of stem cell aggregates.
    Wallman L; Åkesson E; Ceric D; Andersson PH; Day K; Hovatta O; Falci S; Laurell T; Sundström E
    Lab Chip; 2011 Oct; 11(19):3241-8. PubMed ID: 21850297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolating single cells in a neurosphere assay using inertial microfluidics.
    Nathamgari SS; Dong B; Zhou F; Kang W; Giraldo-Vela JP; McGuire T; McNaughton RL; Sun C; Kessler JA; Espinosa HD
    Lab Chip; 2015 Dec; 15(24):4591-7. PubMed ID: 26511875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Microfluidic Platform for High-throughput Single-cell Isolation and Culture.
    Lin CH; Chang HC; Hsu CH
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells.
    Bae J; Lee N; Choi W; Lee S; Ko JJ; Han BS; Lee SC; Jeon NL; Song J
    Methods Mol Biol; 2016; 1502():223-35. PubMed ID: 27062598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropillar-based microfluidic device to regulate neurite networks of uniform-sized neurospheres.
    Kim DE; Lee JM; Ahrberg CD; Shaker MR; Lee JH; Sun W; Chung BG
    Electrophoresis; 2019 Feb; 40(3):419-424. PubMed ID: 29931692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic dual-well device for high-throughput single-cell capture and culture.
    Lin CH; Hsiao YH; Chang HC; Yeh CF; He CK; Salm EM; Chen C; Chiu IM; Hsu CH
    Lab Chip; 2015 Jul; 15(14):2928-38. PubMed ID: 26060987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances and future applications of microfluidic live-cell microarrays.
    Rothbauer M; Wartmann D; Charwat V; Ertl P
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):948-61. PubMed ID: 26133396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for efficiently generating neurospheres from human-induced pluripotent stem cells using microsphere arrays.
    Shofuda T; Fukusumi H; Kanematsu D; Yamamoto A; Yamasaki M; Arita N; Kanemura Y
    Neuroreport; 2013 Jan; 24(2):84-90. PubMed ID: 23238165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.
    Lee N; Park JW; Kim HJ; Yeon JH; Kwon J; Ko JJ; Oh SH; Kim HS; Kim A; Han BS; Lee SC; Jeon NL; Song J
    Mol Cells; 2014 Jun; 37(6):497-502. PubMed ID: 24938227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.
    Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S
    Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Neural Stem Cells from Whole Brain Tissues of Adult Mice.
    Deshpande K; Saatian B; Martirosian V; Lin M; Julian A; Neman J
    Curr Protoc Stem Cell Biol; 2019 Jun; 49(1):e80. PubMed ID: 30720927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device.
    Han S; Yang K; Shin Y; Lee JS; Kamm RD; Chung S; Cho SW
    Lab Chip; 2012 Jul; 12(13):2305-8. PubMed ID: 22622966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells.
    Chung DJ; Wong A; Hayashi K; Yellowley CE
    Vet J; 2014 Jan; 199(1):123-30. PubMed ID: 24252224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices.
    Dånmark S; Gladnikoff M; Frisk T; Zelenina M; Mustafa K; Russom A; Finne-Wistrand A
    Biomed Microdevices; 2012 Oct; 14(5):885-93. PubMed ID: 22714394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.