BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27044093)

  • 21. Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia.
    Peyser RD; Lanno SM; Shimshak SJ; Coolon JD
    Insect Mol Biol; 2017 Dec; 26(6):715-720. PubMed ID: 28703934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic variation in disease resistance in Drosophila spp. is mitigated in Drosophila sechellia by specialization to a toxic host.
    O'Malley L; Wang J; Nikzad M; Sheng H; St Leger R
    Sci Rep; 2023 May; 13(1):7793. PubMed ID: 37179396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of fatty acid taste in drosophilids.
    Dey M; Brown E; Charlu S; Keene A; Dahanukar A
    Cell Rep; 2023 Oct; 42(10):113297. PubMed ID: 37864792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomic Analysis of Octanoic Acid Response in
    Lanno SM; Gregory SM; Shimshak SJ; Alverson MK; Chiu K; Feil AL; Findley MG; Forman TE; Gordon JT; Ho J; Krupp JL; Lam I; Lane J; Linde SC; Morse AE; Rusk S; Ryan R; Saniee A; Sheth RB; Siranosian JJ; Sirichantaropart L; Sternlieb SR; Zaccardi CM; Coolon JD
    G3 (Bethesda); 2017 Dec; 7(12):3867-3873. PubMed ID: 29021218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift.
    Shiao MS; Chang JM; Fan WL; Lu MY; Notredame C; Fang S; Kondo R; Li WH
    Genome Biol Evol; 2015 Oct; 7(10):2843-58. PubMed ID: 26430061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genes for host-plant selection in Drosophila.
    Matsuo T
    J Neurogenet; 2008; 22(3):195-210. PubMed ID: 19040187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia.
    McBride CS
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4996-5001. PubMed ID: 17360391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetics of food preference in Drosophila sechellia. I. Responses to food attractants.
    Higa I; Fuyama Y
    Genetica; 1993; 88(2-3):129-36. PubMed ID: 8224853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of Acid-Sensing Olfactory Circuits in Drosophilids.
    Prieto-Godino LL; Rytz R; Cruchet S; Bargeton B; Abuin L; Silbering AF; Ruta V; Dal Peraro M; Benton R
    Neuron; 2017 Feb; 93(3):661-676.e6. PubMed ID: 28111079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region.
    Andrade López JM; Lanno SM; Auerbach JM; Moskowitz EC; Sligar LA; Wittkopp PJ; Coolon JD
    Mol Ecol; 2017 Feb; 26(4):1148-1160. PubMed ID: 28035709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dopamine drives Drosophila sechellia adaptation to its toxic host.
    Lavista-Llanos S; Svatoš A; Kai M; Riemensperger T; Birman S; Stensmyr MC; Hansson BS
    Elife; 2014 Dec; 3():. PubMed ID: 25487989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microsatellite variation suggests a recent fine-scale population structure of Drosophila sechellia, a species endemic of the Seychelles archipelago.
    Legrand D; Vautrin D; Lachaise D; Cariou ML
    Genetica; 2011 Jul; 139(7):909-19. PubMed ID: 21761131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Odor-regulated oviposition behavior in an ecological specialist.
    Álvarez-Ocaña R; Shahandeh MP; Ray V; Auer TO; Gompel N; Benton R
    Nat Commun; 2023 May; 14(1):3041. PubMed ID: 37236992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Major Locus Controls a Genital Shape Difference Involved in Reproductive Isolation Between Drosophila yakuba and Drosophila santomea.
    Peluffo AE; Nuez I; Debat V; Savisaar R; Stern DL; Orgogozo V
    G3 (Bethesda); 2015 Oct; 5(12):2893-901. PubMed ID: 26511499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetics of a nonoptimal behavior: oviposition preference of Drosophila mauritiana for a toxic resource.
    Moreteau B; R'Kha S; David JR
    Behav Genet; 1994 Sep; 24(5):433-41. PubMed ID: 7993320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade.
    Turissini DA; Matute DR
    PLoS Genet; 2017 Sep; 13(9):e1006971. PubMed ID: 28873409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential adaptive introgression of the mitochondrial genome in Drosophila yakuba and Drosophila santomea.
    Llopart A; Herrig D; Brud E; Stecklein Z
    Mol Ecol; 2014 Mar; 23(5):1124-36. PubMed ID: 24460929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the role of
    Lanno SM; Shimshak SJ; Peyser RD; Linde SC; Coolon JD
    Ecol Evol; 2019 Feb; 9(4):1922-1933. PubMed ID: 30847082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetics of a difference in pigmentation between Drosophila yakuba and Drosophila santomea.
    Llopart A; Elwyn S; Lachaise D; Coyne JA
    Evolution; 2002 Nov; 56(11):2262-77. PubMed ID: 12487356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic toxicity evaluation of Morinda citrifolia fruit and leaf in mice.
    Mohamad Shalan NAA; Mustapha NM; Mohamed S
    Regul Toxicol Pharmacol; 2017 Feb; 83():46-53. PubMed ID: 27871867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.