These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27044101)

  • 1. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.
    Oertell K; Harcourt EM; Mohsen MG; Petruska J; Kool ET; Goodman MF
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):E2277-85. PubMed ID: 27044101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between DNA melting thermodynamics and DNA polymerase fidelity.
    Petruska J; Goodman MF; Boosalis MS; Sowers LC; Cheong C; Tinoco I
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6252-6. PubMed ID: 3413095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polymerase beta: structure-fidelity relationship from Pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant.
    Ahn J; Werneburg BG; Tsai MD
    Biochemistry; 1997 Feb; 36(5):1100-7. PubMed ID: 9033400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β.
    Oertell K; Florián J; Haratipour P; Crans DC; Kashemirov BA; Wilson SH; McKenna CE; Goodman MF
    Biochemistry; 2019 Apr; 58(13):1764-1773. PubMed ID: 30839203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase beta fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state.
    Sucato CA; Upton TG; Kashemirov BA; Osuna J; Oertell K; Beard WA; Wilson SH; Florián J; Warshel A; McKenna CE; Goodman MF
    Biochemistry; 2008 Jan; 47(3):870-9. PubMed ID: 18161950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic difference between synthesis of correct and incorrect base pairs accounts for highly accurate DNA replication.
    Olson AC; Patro JN; Urban M; Kuchta RD
    J Am Chem Soc; 2013 Jan; 135(4):1205-8. PubMed ID: 23316816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
    Wu WJ; Su MI; Wu JL; Kumar S; Lim LH; Wang CW; Nelissen FH; Chen MC; Doreleijers JF; Wijmenga SS; Tsai MD
    J Am Chem Soc; 2014 Apr; 136(13):4927-37. PubMed ID: 24617852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional evidence for a small and rigid active site in a high fidelity DNA polymerase: probing T7 DNA polymerase with variably sized base pairs.
    Kim TW; Brieba LG; Ellenberger T; Kool ET
    J Biol Chem; 2006 Jan; 281(4):2289-95. PubMed ID: 16311403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Varying DNA base-pair size in subangstrom increments: evidence for a loose, not large, active site in low-fidelity Dpo4 polymerase.
    Mizukami S; Kim TW; Helquist SA; Kool ET
    Biochemistry; 2006 Mar; 45(9):2772-8. PubMed ID: 16503632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase fidelity: comparing direct competition of right and wrong dNTP substrates with steady state and pre-steady state kinetics.
    Bertram JG; Oertell K; Petruska J; Goodman MF
    Biochemistry; 2010 Jan; 49(1):20-8. PubMed ID: 20000359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the reverse rate of the conformational step to polymerase beta fidelity.
    Bakhtina M; Roettger MP; Tsai MD
    Biochemistry; 2009 Apr; 48(14):3197-208. PubMed ID: 19231836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics during high-fidelity DNA replication and translocation defined using a DNA polymerase with a fluorescent artificial amino acid.
    Dangerfield TL; Johnson KA
    J Biol Chem; 2021; 296():100143. PubMed ID: 33273013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA replication fidelity: kinetics and thermodynamics.
    Goodman MF
    Mutat Res; 1988; 200(1-2):11-20. PubMed ID: 3393157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a Watson-Crick hydrogen bonding requirement in DNA synthesis by human DNA polymerase kappa.
    Wolfle WT; Washington MT; Kool ET; Spratt TE; Helquist SA; Prakash L; Prakash S
    Mol Cell Biol; 2005 Aug; 25(16):7137-43. PubMed ID: 16055723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver(I)-Ion-Mediated Cytosine-Containing Base Pairs: Metal Ion Specificity for Duplex Stabilization and Susceptibility toward DNA Polymerases.
    Funai T; Aotani M; Kiriu R; Nakamura J; Miyazaki Y; Nakagawa O; Wada SI; Torigoe H; Ono A; Urata H
    Chembiochem; 2020 Feb; 21(4):517-522. PubMed ID: 31460689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.