These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27044305)

  • 1. Pathogenic effects of glucosyltransferase from Clostridium difficile toxins.
    Zhang Y; Feng H
    Pathog Dis; 2016 Jun; 74(4):ftw024. PubMed ID: 27044305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B.
    Chen S; Wang H; Gu H; Sun C; Li S; Feng H; Wang J
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27537911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical roles of Clostridium difficile toxin B enzymatic activities in pathogenesis.
    Li S; Shi L; Yang Z; Zhang Y; Perez-Cordon G; Huang T; Ramsey J; Oezguen N; Savidge TC; Feng H
    Infect Immun; 2015 Feb; 83(2):502-13. PubMed ID: 25404023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
    Jank T; Aktories K
    Trends Microbiol; 2008 May; 16(5):222-9. PubMed ID: 18394902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosyltransferase activity of Clostridium difficile Toxin B is essential for disease pathogenesis.
    Yang Z; Zhang Y; Huang T; Feng H
    Gut Microbes; 2015 Jul; 6(4):221-4. PubMed ID: 26091306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis.
    Bilverstone TW; Garland M; Cave RJ; Kelly ML; Tholen M; Bouley DM; Kaye P; Minton NP; Bogyo M; Kuehne SA; Melnyk RA
    PLoS Pathog; 2020 Sep; 16(9):e1008852. PubMed ID: 32960931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A.
    Schoentaube J; Olling A; Tatge H; Just I; Gerhard R
    Cell Microbiol; 2009 Dec; 11(12):1816-26. PubMed ID: 19709124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A.
    Cowardin CA; Jackman BM; Noor Z; Burgess SL; Feig AL; Petri WA
    Infect Immun; 2016 Aug; 84(8):2317-2323. PubMed ID: 27271747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism.
    Chumbler NM; Farrow MA; Lapierre LA; Franklin JL; Haslam DB; Goldenring JR; Lacy DB
    PLoS Pathog; 2012; 8(12):e1003072. PubMed ID: 23236283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis of Clostridium difficile infection.
    Borriello SP
    J Antimicrob Chemother; 1998 May; 41 Suppl C():13-9. PubMed ID: 9630370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B.
    Genisyuerek S; Papatheodorou P; Guttenberg G; Schubert R; Benz R; Aktories K
    Mol Microbiol; 2011 Mar; 79(6):1643-54. PubMed ID: 21231971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like
    Steinemann M; Schlosser A; Jank T; Aktories K
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9580-9585. PubMed ID: 30181275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of bacterial metabolism and physiology in the pathogenesis of Clostridium difficile disease.
    Bongaerts GP; Lyerly DM
    Microb Pathog; 1997 Apr; 22(4):253-6. PubMed ID: 9140922
    [No Abstract]   [Full Text] [Related]  

  • 16. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters.
    Geric B; Carman RJ; Rupnik M; Genheimer CW; Sambol SP; Lyerly DM; Gerding DN; Johnson S
    J Infect Dis; 2006 Apr; 193(8):1143-50. PubMed ID: 16544255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium difficile colitis: pathogenesis and host defence.
    Abt MC; McKenney PT; Pamer EG
    Nat Rev Microbiol; 2016 Oct; 14(10):609-20. PubMed ID: 27573580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyknotic cell death induced by Clostridium difficile TcdB: chromatin condensation and nuclear blister are induced independently of the glucosyltransferase activity.
    Wohlan K; Goy S; Olling A; Srivaratharajan S; Tatge H; Genth H; Gerhard R
    Cell Microbiol; 2014 Nov; 16(11):1678-92. PubMed ID: 24898616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium difficile recurrent infection: possible implication of TA systems.
    Gil F; Pizarro-Guajardo M; Álvarez R; Garavaglia M; Paredes-Sabja D
    Future Microbiol; 2015; 10(10):1649-57. PubMed ID: 26439907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.