These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27044676)

  • 1. Protein Repeats from First Principles.
    Turjanski P; Parra RG; Espada R; Becher V; Ferreiro DU
    Sci Rep; 2016 Apr; 6():23959. PubMed ID: 27044676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Socket: a program for identifying and analysing coiled-coil motifs within protein structures.
    Walshaw J; Woolfson DN
    J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit.
    Garcia-Higuera I; Fenoglio J; Li Y; Lewis C; Panchenko MP; Reiner O; Smith TF; Neer EJ
    Biochemistry; 1996 Nov; 35(44):13985-94. PubMed ID: 8909296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins.
    Bystroff C; Thorsson V; Baker D
    J Mol Biol; 2000 Aug; 301(1):173-90. PubMed ID: 10926500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the detection and validation of repeats in protein structure.
    Murray KB; Taylor WR; Thornton JM
    Proteins; 2004 Nov; 57(2):365-80. PubMed ID: 15340924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of gene duplication signals of Ig folds from their amino acid sequences.
    Huang Y; Xiao Y
    Proteins; 2007 Jul; 68(1):267-72. PubMed ID: 17427227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing coevolutionary signals inrepeat proteins.
    Espada R; Parra RG; Mora T; Walczak AM; Ferreiro DU
    BMC Bioinformatics; 2015 Jul; 16():207. PubMed ID: 26134293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why inverse proteins are relatively abundant.
    Nebel JC; Walawage CG
    Protein Pept Lett; 2010 Jul; 17(7):854-60. PubMed ID: 20205652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the preferential reuse of sub-domain motifs in primordial protein folds.
    Heizinger L; Merkl R
    Proteins; 2021 Sep; 89(9):1167-1179. PubMed ID: 33957009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology-based method for identification of protein repeats using statistical significance estimates.
    Andrade MA; Ponting CP; Gibson TJ; Bork P
    J Mol Biol; 2000 May; 298(3):521-37. PubMed ID: 10772867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Natural Structure of Amino Acid Patterns in Families of Protein Sequences.
    Turjanski P; Ferreiro DU
    J Phys Chem B; 2018 Dec; 122(49):11295-11301. PubMed ID: 30239207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
    Lampros C; Costas Papaloukas ; Exarchos TP; Yorgos Goletsis ; Fotiadis DI
    Comput Biol Med; 2007 Sep; 37(9):1211-24. PubMed ID: 17161834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.
    Huan J; Bandyopadhyay D; Prins J; Snoeyink J; Tropsha A; Wang W
    Comput Syst Bioinformatics Conf; 2006; ():227-38. PubMed ID: 17369641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of protein latent periodicities using recurrent correlation analysis.
    Ji X; Wang Y; Wang H; Sun M
    J Theor Biol; 2008 Dec; 255(3):316-9. PubMed ID: 18812177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimised amino acid specific weighting factors for unbound protein docking.
    Heuser P; Schomburg D
    BMC Bioinformatics; 2006 Jul; 7():344. PubMed ID: 16842615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid propensities for secondary structures are influenced by the protein structural class.
    Costantini S; Colonna G; Facchiano AM
    Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.