These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27044725)

  • 1. A general strategy for expanding polymerase function by droplet microfluidics.
    Larsen AC; Dunn MR; Hatch A; Sau SP; Youngbull C; Chaput JC
    Nat Commun; 2016 Apr; 7():11235. PubMed ID: 27044725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering TNA polymerases through iterative cycles of directed evolution.
    Yik EJ; Maola VA; Chaput JC
    Methods Enzymol; 2023; 691():29-59. PubMed ID: 37914450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA polymerase-mediated DNA synthesis on a TNA template.
    Chaput JC; Ichida JK; Szostak JW
    J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for TNA synthesis by an engineered TNA polymerase.
    Chim N; Shi C; Sau SP; Nikoomanzar A; Chaput JC
    Nat Commun; 2017 Nov; 8(1):1810. PubMed ID: 29180809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of custom polymerases using droplet microfluidics.
    Vallejo D; Nikoomanzar A; Chaput JC
    Methods Enzymol; 2020; 644():227-253. PubMed ID: 32943147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution.
    Nikoomanzar A; Vallejo D; Yik EJ; Chaput JC
    ACS Synth Biol; 2020 Jul; 9(7):1873-1881. PubMed ID: 32531152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering polymerases for applications in synthetic biology.
    Nikoomanzar A; Chim N; Yik EJ; Chaput JC
    Q Rev Biophys; 2020 Jul; 53():e8. PubMed ID: 32715992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.
    Dunn MR; Otto C; Fenton KE; Chaput JC
    ACS Chem Biol; 2016 May; 11(5):1210-9. PubMed ID: 26860781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue.
    Mei H; Shi C; Jimenez RM; Wang Y; Kardouh M; Chaput JC
    Nucleic Acids Res; 2017 Jun; 45(10):5629-5638. PubMed ID: 28472363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase.
    Mei H; Chaput JC
    Chem Commun (Camb); 2018 Jan; 54(10):1237-1240. PubMed ID: 29340357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient and faithful in vitro replication system for threose nucleic acid.
    Yu H; Zhang S; Dunn MR; Chaput JC
    J Am Chem Soc; 2013 Mar; 135(9):3583-91. PubMed ID: 23432469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.
    Vallejo D; Nikoomanzar A; Paegel BM; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1430-1440. PubMed ID: 31120731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 2'-Deoxy-α-l-threofuranosyl Nucleoside Triphosphates.
    Bala S; Liao JY; Zhang L; Tran CN; Chim N; Chaput JC
    J Org Chem; 2018 Aug; 83(16):8840-8850. PubMed ID: 30011988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the substrate repertoire of a DNA polymerase by directed evolution.
    Fa M; Radeghieri A; Henry AA; Romesberg FE
    J Am Chem Soc; 2004 Feb; 126(6):1748-54. PubMed ID: 14871106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.