BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 27044751)

  • 21. High-temperature single-molecule kinetic analysis of thermophilic archaeal MCM helicases.
    Schermerhorn KM; Tanner N; Kelman Z; Gardner AF
    Nucleic Acids Res; 2016 Oct; 44(18):8764-8771. PubMed ID: 27382065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel interaction of the bacterial-Like DnaG primase with the MCM helicase in archaea.
    Bauer RJ; Graham BW; Trakselis MA
    J Mol Biol; 2013 Apr; 425(8):1259-73. PubMed ID: 23357171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unwinding the structure and function of the archaeal MCM helicase.
    Sakakibara N; Kelman LM; Kelman Z
    Mol Microbiol; 2009 Apr; 72(2):286-96. PubMed ID: 19415794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modular organization of the Sulfolobus solfataricus mini-chromosome maintenance protein.
    Pucci B; De Felice M; Rocco M; Esposito F; De Falco M; Esposito L; Rossi M; Pisani FM
    J Biol Chem; 2007 Apr; 282(17):12574-82. PubMed ID: 17337732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations in subdomain B of the minichromosome maintenance (MCM) helicase affect DNA binding and modulate conformational transitions.
    Jenkinson ER; Costa A; Leech AP; Patwardhan A; Onesti S; Chong JP
    J Biol Chem; 2009 Feb; 284(9):5654-61. PubMed ID: 19116205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ferroplasma acidarmanus RPA2 facilitates efficient unwinding of forked DNA substrates by monomers of FacXPD helicase.
    Pugh RA; Lin Y; Eller C; Leesley H; Cann IK; Spies M
    J Mol Biol; 2008 Nov; 383(5):982-98. PubMed ID: 18801373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Archaeal MCM has separable processivity, substrate choice and helicase domains.
    Barry ER; McGeoch AT; Kelman Z; Bell SD
    Nucleic Acids Res; 2007; 35(3):988-98. PubMed ID: 17259218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus.
    Goswami K; Arora J; Saha S
    Sci Rep; 2015 Mar; 5():9057. PubMed ID: 25762096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on modulating the loading of the MCM helicase onto the origins of the hyperthermophilic archaeon Sulfolobus solfataricus P2.
    Jiang PX; Wang J; Feng Y; He ZG
    Biochem Biophys Res Commun; 2007 Sep; 361(3):651-8. PubMed ID: 17673179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert.
    Jenkinson ER; Chong JP
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7613-8. PubMed ID: 16679413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical characterization of two Cdc6/ORC1-like proteins from the crenarchaeon Sulfolobus solfataricus.
    De Felice M; Esposito L; Rossi M; Pisani FM
    Extremophiles; 2006 Feb; 10(1):61-70. PubMed ID: 16179962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MCM structure and mechanics: what we have learned from archaeal MCM.
    Slaymaker IM; Chen XS
    Subcell Biochem; 2012; 62():89-111. PubMed ID: 22918582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction.
    Pugh RA; Honda M; Leesley H; Thomas A; Lin Y; Nilges MJ; Cann IKO; Spies M
    J Biol Chem; 2008 Jan; 283(3):1732-1743. PubMed ID: 18029358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interplay of DNA binding, ATP hydrolysis and helicase activities of the archaeal MCM helicase.
    Liew LP; Bell SD
    Biochem J; 2011 Jun; 436(2):409-14. PubMed ID: 21361871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An explanation for origin unwinding in eukaryotes.
    Langston LD; O'Donnell ME
    Elife; 2019 Jul; 8():. PubMed ID: 31282859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain.
    Liu W; Pucci B; Rossi M; Pisani FM; Ladenstein R
    Nucleic Acids Res; 2008 Jun; 36(10):3235-43. PubMed ID: 18417534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2-7 Helicase to Reveal Essential Features of Structure and Function.
    Miller JM; Enemark EJ
    Archaea; 2015; 2015():305497. PubMed ID: 26539061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Function of a strand-separation pin element in the PriA DNA replication restart helicase.
    Windgassen TA; Leroux M; Sandler SJ; Keck JL
    J Biol Chem; 2019 Feb; 294(8):2801-2814. PubMed ID: 30593500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A superfamily 3 DNA helicase encoded by plasmid pSSVi from the hyperthermophilic archaeon Sulfolobus solfataricus unwinds DNA as a higher-order oligomer and interacts with host primase.
    Guo X; Huang L
    J Bacteriol; 2010 Apr; 192(7):1853-64. PubMed ID: 20118258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Processivity of nucleic acid unwinding and translocation by helicases.
    Xie P
    Proteins; 2016 Nov; 84(11):1590-1605. PubMed ID: 27410462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.