BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27044869)

  • 1. Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13.
    Obodo UC; Epum EA; Platts MH; Seloff J; Dahlson NA; Velkovsky SM; Paul SR; Friedman KL
    Mol Cell Biol; 2016 Jun; 36(12):1750-63. PubMed ID: 27044869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
    Epum EA; Mohan MJ; Ruppe NP; Friedman KL
    PLoS Genet; 2020 Feb; 16(2):e1008608. PubMed ID: 32012161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks.
    Zhang W; Durocher D
    Genes Dev; 2010 Mar; 24(5):502-15. PubMed ID: 20194442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae.
    Ngo K; Gittens TH; Gonzalez DI; Hatmaker EA; Plotkin S; Engle M; Friedman GA; Goldin M; Hoerr RE; Eichman BF; Rokas A; Benton ML; Friedman KL
    Genetics; 2023 May; 224(2):. PubMed ID: 37119805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage.
    Ouenzar F; Lalonde M; Laprade H; Morin G; Gallardo F; Tremblay-Belzile S; Chartrand P
    J Cell Biol; 2017 Aug; 216(8):2355-2371. PubMed ID: 28637749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres.
    Strecker J; Stinus S; Caballero MP; Szilard RK; Chang M; Durocher D
    Elife; 2017 Aug; 6():. PubMed ID: 28826474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae.
    Pennaneach V; Putnam CD; Kolodner RD
    Mol Microbiol; 2006 Mar; 59(5):1357-68. PubMed ID: 16468981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres.
    Faure V; Coulon S; Hardy J; Géli V
    Mol Cell; 2010 Jun; 38(6):842-52. PubMed ID: 20620955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1.
    Bianchi A; Negrini S; Shore D
    Mol Cell; 2004 Oct; 16(1):139-46. PubMed ID: 15469829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation.
    Negrini S; Ribaud V; Bianchi A; Shore D
    Genes Dev; 2007 Feb; 21(3):292-302. PubMed ID: 17289918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA.
    Nickens DG; Feng Z; Shen J; Gray SJ; Simmons RH; Niu H; Bochman ML
    Nucleic Acids Res; 2024 Jun; 52(11):6317-6332. PubMed ID: 38613387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Est1 and Cdc13 as comediators of telomerase access.
    Evans SK; Lundblad V
    Science; 1999 Oct; 286(5437):117-20. PubMed ID: 10506558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13.
    Anderson EM; Halsey WA; Wuttke DS
    Biochemistry; 2003 Apr; 42(13):3751-8. PubMed ID: 12667066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast.
    Ngo K; Epum EA; Friedman KL
    Curr Genet; 2020 Oct; 66(5):917-926. PubMed ID: 32399607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.
    Phillips JA; Chan A; Paeschke K; Zakian VA
    PLoS Genet; 2015 Apr; 11(4):e1005186. PubMed ID: 25906395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear chromosome maintenance in the absence of essential telomere-capping proteins.
    Zubko MK; Lydall D
    Nat Cell Biol; 2006 Jul; 8(7):734-40. PubMed ID: 16767084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae.
    Addinall SG; Downey M; Yu M; Zubko MK; Dewar J; Leake A; Hallinan J; Shaw O; James K; Wilkinson DJ; Wipat A; Durocher D; Lydall D
    Genetics; 2008 Dec; 180(4):2251-66. PubMed ID: 18845848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hotspot of de novo telomere addition stabilizes linear amplicons in yeast grown in sulfate-limiting conditions.
    Hoerr RE; Eng A; Payen C; Di Rienzi SC; Raghuraman MK; Dunham MJ; Brewer BJ; Friedman KL
    Genetics; 2023 May; 224(2):. PubMed ID: 36702776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive map of hotspots of de novo telomere addition in
    Ngo K; Gittens TH; Gonzalez DI; Hatmaker EA; Plotkin S; Engle M; Friedman GA; Goldin M; Hoerr RE; Eichman BF; Rokas A; Benton ML; Friedman KL
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New function of CDC13 in positive telomere length regulation.
    Meier B; Driller L; Jaklin S; Feldmann HM
    Mol Cell Biol; 2001 Jul; 21(13):4233-45. PubMed ID: 11390652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.