BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27044989)

  • 1. Multiple-input nonlinear modelling of cerebral haemodynamics using spontaneous arterial blood pressure, end-tidal CO2 and heart rate measurements.
    Marmarelis VZ; Mitsis GD; Shin DC; Zhang R
    Philos Trans A Math Phys Eng Sci; 2016 May; 374(2067):. PubMed ID: 27044989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes.
    Marmarelis V; Shin D; Zhang R
    Open Biomed Eng J; 2012; 6():42-55. PubMed ID: 22723806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the frequency domain: the multiple and partial coherence of cerebral blood flow velocity in the assessment of dynamic cerebral autoregulation.
    Katsogridakis E; Simpson DM; Bush G; Fan L; Birch AA; Allen R; Potter JF; Panerai RB
    Physiol Meas; 2016 Jul; 37(7):1056-73. PubMed ID: 27244196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Dynamic Relationship Between Cortical Oxygenation and End-Tidal
    Marmarelis VZ; Shin DC; Zhang R
    Front Physiol; 2021; 12():772456. PubMed ID: 34955886
    [No Abstract]   [Full Text] [Related]  

  • 5. Data-based modeling of cerebral hemodynamics quantifies impairment of cerebral blood flow regulation in type-2 diabetes.
    Marmarelis VZ; Shin DC; Kang Y; Novak V
    J Cereb Blood Flow Metab; 2024 May; ():271678X241254716. PubMed ID: 38748923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans.
    Mitsis GD; Poulin MJ; Robbins PA; Marmarelis VZ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1932-43. PubMed ID: 15536895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation.
    Salinet AS; Robinson TG; Panerai RB
    J Appl Physiol (1985); 2015 Jan; 118(2):170-7. PubMed ID: 25593216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
    Kostoglou K; Debert CT; Poulin MJ; Mitsis GD
    Med Eng Phys; 2014 May; 36(5):592-600. PubMed ID: 24291338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation is preserved during acute head-down tilt.
    Cooke WH; Pellegrini GL; Kovalenko OA
    J Appl Physiol (1985); 2003 Oct; 95(4):1439-45. PubMed ID: 12832430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is dynamic cerebral autoregulation measurement using transcranial Doppler ultrasound reproducible in the presence of high concentration oxygen and carbon dioxide?
    Minhas JS; Syed NF; Haunton VJ; Panerai RB; Robinson TG; Mistri AK
    Physiol Meas; 2016 May; 37(5):673-82. PubMed ID: 27093290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visually evoked blood flow responses and interaction with dynamic cerebral autoregulation: correction for blood pressure variation.
    Gommer ED; Bogaarts G; Martens EG; Mess WH; Reulen JP
    Med Eng Phys; 2014 May; 36(5):613-9. PubMed ID: 24507691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of task activation using the Addenbrooke's cognitive examination in healthy controls: A functional Transcranial Doppler ultrasonography study.
    Beishon L; Williams CAL; Panerai RB; Robinson TG; Haunton VJ
    J Neurosci Methods; 2017 Nov; 291():131-140. PubMed ID: 28827165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency.
    Iwasaki K; Ogawa Y; Shibata S; Aoki K
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):776-84. PubMed ID: 16926845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes.
    Zhong Y; Wang H; Ju KH; Jan KM; Chon KH
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):255-62. PubMed ID: 14765698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral haemodynamics during hypo- and hypercapnia: determination with simultaneous 15O-butanol-PET and transcranial Doppler sonography.
    Poeppel TD; Terborg C; Hautzel H; Herzog H; Witte OW; Mueller HW; Krause BJ
    Nuklearmedizin; 2007; 46(3):93-100. PubMed ID: 17549320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2.
    Liu J; Simpson MD; Yan J; Allen R
    Physiol Meas; 2010 Oct; 31(10):1291-307. PubMed ID: 20720290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing.
    Claassen JA; Zhang R; Fu Q; Witkowski S; Levine BD
    J Appl Physiol (1985); 2007 Mar; 102(3):870-7. PubMed ID: 17110510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid pressure-to-flow dynamics of cerebral autoregulation induced by instantaneous changes of arterial CO2.
    Liu J; Simpson DM; Kouchakpour H; Panerai RB; Chen J; Gao S; Zhang P; Wu X
    Med Eng Phys; 2014 Dec; 36(12):1636-43. PubMed ID: 25287624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.