BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27045205)

  • 1. Asymmetry During Maximal Sprint Performance in 11- to 16-Year-Old Boys.
    Meyers RW; Oliver JL; Hughes MG; Lloyd RS; Cronin JB
    Pediatr Exerc Sci; 2017 Feb; 29(1):94-102. PubMed ID: 27045205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower-Limb Stiffness and Maximal Sprint Speed in 11-16-Year-Old Boys.
    Meyers RW; Moeskops S; Oliver JL; Hughes MG; Cronin JB; Lloyd RS
    J Strength Cond Res; 2019 Jul; 33(7):1987-1995. PubMed ID: 31242140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Maturation on Sprint Performance in Boys over a 21-Month Period.
    Meyers RW; Oliver JL; Hughes MG; Lloyd RS; Cronin JB
    Med Sci Sports Exerc; 2016 Dec; 48(12):2555-2562. PubMed ID: 27434083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait asymmetry: composite scores for mechanical analyses of sprint running.
    Exell TA; Gittoes MJ; Irwin G; Kerwin DG
    J Biomech; 2012 Apr; 45(6):1108-11. PubMed ID: 22296935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength and performance asymmetry during maximal velocity sprint running.
    Exell T; Irwin G; Gittoes M; Kerwin D
    Scand J Med Sci Sports; 2017 Nov; 27(11):1273-1282. PubMed ID: 27671707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Age, Maturity, and Body Size on the Spatiotemporal Determinants of Maximal Sprint Speed in Boys.
    Meyers RW; Oliver JL; Hughes MG; Lloyd RS; Cronin JB
    J Strength Cond Res; 2017 Apr; 31(4):1009-1016. PubMed ID: 26694506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leg power and hopping stiffness: relationship with sprint running performance.
    Chelly SM; Denis C
    Med Sci Sports Exerc; 2001 Feb; 33(2):326-33. PubMed ID: 11224825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of the Spatiotemporal Determinants of Maximal Sprint Speed in Adolescent Boys Over Single and Multiple Steps.
    Meyers RW; Oliver JL; Hughes MG; Lloyd RS; Cronin J
    Pediatr Exerc Sci; 2015 Aug; 27(3):419-26. PubMed ID: 25970549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters.
    Haugen T; Danielsen J; McGhie D; Sandbakk Ø; Ettema G
    Scand J Med Sci Sports; 2018 Mar; 28(3):1001-1008. PubMed ID: 28759127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximal sprint speed in boys of increasing maturity.
    Meyers RW; Oliver JL; Hughes MG; Cronin JB; Lloyd RS
    Pediatr Exerc Sci; 2015 Feb; 27(1):85-94. PubMed ID: 25054903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprint mechanical differences at maximal running speed: Effects of performance level.
    Paradisis GP; Bissas A; Pappas P; Zacharogiannis E; Theodorou A; Girard O
    J Sports Sci; 2019 Sep; 37(17):2026-2036. PubMed ID: 31084299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical and leg stiffness and stretch-shortening cycle changes across maturation during maximal sprint running.
    Rumpf MC; Cronin JB; Oliver JL; Hughes MG
    Hum Mov Sci; 2013 Aug; 32(4):668-76. PubMed ID: 24054902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players.
    Mendez-Villanueva A; Buchheit M; Kuitunen S; Douglas A; Peltola E; Bourdon P
    J Sports Sci; 2011 Mar; 29(5):477-84. PubMed ID: 21225488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sprint running: how changes in step frequency affect running mechanics and leg spring behaviour at maximal speed.
    Monte A; Muollo V; Nardello F; Zamparo P
    J Sports Sci; 2017 Feb; 35(4):339-345. PubMed ID: 27028346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys.
    Nagahara R; Takai Y; Haramura M; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    Pediatr Exerc Sci; 2018 Aug; 30(3):335-344. PubMed ID: 29478372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of chronological age and gender on the development of sprint performance during childhood and puberty.
    Papaiakovou G; Giannakos A; Michailidis C; Patikas D; Bassa E; Kalopisis V; Anthrakidis N; Kotzamanidis C
    J Strength Cond Res; 2009 Dec; 23(9):2568-73. PubMed ID: 19910817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of resisted sprint training on maximum sprint kinetics and kinematics in youth.
    Rumpf MC; Cronin JB; Mohamad IN; Mohamad S; Oliver JL; Hughes MG
    Eur J Sport Sci; 2015; 15(5):374-81. PubMed ID: 25190489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Potential for a Targeted Strength-Training Program to Decrease Asymmetry and Increase Performance: A Proof of Concept in Sprinting.
    Brown SR; Feldman ER; Cross MR; Helms ER; Marrier B; Samozino P; Morin JB
    Int J Sports Physiol Perform; 2017 Nov; 12(10):1392-1395. PubMed ID: 28338355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of short burst activities on sprint and agility performance in 11- to 12-year-old boys.
    Pettersen SA; Mathisen GE
    J Strength Cond Res; 2012 Apr; 26(4):1033-8. PubMed ID: 22446672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sprint mechanics evaluation using inertial sensor-based technology: A laboratory validation study.
    Setuain I; Lecumberri P; Ahtiainen JP; Mero AA; Häkkinen K; Izquierdo M
    Scand J Med Sci Sports; 2018 Feb; 28(2):463-472. PubMed ID: 28685862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.