These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27045322)
1. Hemodynamic, Hematological, and Hormonal Responses to Submaximal Exercise in Normobaric Hypoxia in Pubescent Girls. Park HY; Nam SS; Tanaka H; Lee DJ Pediatr Exerc Sci; 2016 Aug; 28(3):417-22. PubMed ID: 27045322 [TBL] [Abstract][Full Text] [Related]
2. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise. Fukuda T; Maegawa T; Matsumoto A; Komatsu Y; Nakajima T; Nagai R; Kawahara T Int Heart J; 2010 May; 51(3):170-5. PubMed ID: 20558906 [TBL] [Abstract][Full Text] [Related]
3. Plasma changes in beta-endorphin to acute hypobaric hypoxia and high intensity exercise. Kraemer WJ; Hamilton AJ; Gordon SE; Trad LA; Reeves JT; Zahn DW; Cymerman A Aviat Space Environ Med; 1991 Aug; 62(8):754-8. PubMed ID: 1656928 [TBL] [Abstract][Full Text] [Related]
4. Effect of acute hypoxia on the hormonal response to exercise. Sutton JR J Appl Physiol Respir Environ Exerc Physiol; 1977 Apr; 42(4):587-92. PubMed ID: 863820 [TBL] [Abstract][Full Text] [Related]
5. Substrate utilization during exercise and recovery at moderate altitude. Katayama K; Goto K; Ishida K; Ogita F Metabolism; 2010 Jul; 59(7):959-66. PubMed ID: 20036404 [TBL] [Abstract][Full Text] [Related]
6. Circulating leucocyte subpopulations in sedentary subjects following graded maximal exercise with hypoxia. Gabriel H; Kullmer T; Schwarz L; Urhausen A; Weiler B; Born P; Kindermann W Eur J Appl Physiol Occup Physiol; 1993; 67(4):348-53. PubMed ID: 8299603 [TBL] [Abstract][Full Text] [Related]
7. A Focused Review on the Maximal Exercise Responses in Hypo- and Normobaric Hypoxia: Divergent Oxygen Uptake and Ventilation Responses. Treml B; Gatterer H; Burtscher J; Kleinsasser A; Burtscher M Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32698542 [TBL] [Abstract][Full Text] [Related]
8. The influence of intermittent altitude exposure to 4100 m on exercise capacity and blood variables. Lundby C; Nielsen TK; Dela F; Damsgaard R Scand J Med Sci Sports; 2005 Jun; 15(3):182-7. PubMed ID: 15885040 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of the concept of living at moderate altitude and training at sea level. Hahn AG; Gore CJ; Martin DT; Ashenden MJ; Roberts AD; Logan PA Comp Biochem Physiol A Mol Integr Physiol; 2001 Apr; 128(4):777-89. PubMed ID: 11282321 [TBL] [Abstract][Full Text] [Related]
10. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m. Wolfel EE; Selland MA; Cymerman A; Brooks GA; Butterfield GE; Mazzeo RS; Grover RF; Reeves JT J Appl Physiol (1985); 1998 Sep; 85(3):1092-102. PubMed ID: 9729588 [TBL] [Abstract][Full Text] [Related]
11. Plasma adrenocorticotrophin and cortisol responses to acute hypoxia at rest and during exercise. Bouissou P; Fiet J; Guezennec CY; Pesquies PC Eur J Appl Physiol Occup Physiol; 1988; 57(1):110-3. PubMed ID: 2830107 [TBL] [Abstract][Full Text] [Related]
12. Vagal Threshold Determination during Incremental Stepwise Exercise in Normoxia and Normobaric Hypoxia. Neuls F; Krejci J; Jakubec A; Botek M; Valenta M Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33086469 [TBL] [Abstract][Full Text] [Related]
13. Effects of three weeks base training at moderate simulated altitude with or without hypoxic residence on exercise capacity and physiological adaptations in well-trained male runners. Yi L; Wu J; Yan B; Wang Y; Zou M; Zhang Y; Li F; Qiu J; Girard O PeerJ; 2024; 12():e17166. PubMed ID: 38563004 [TBL] [Abstract][Full Text] [Related]
14. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. Lizamore CA; Hamlin MJ High Alt Med Biol; 2017 Dec; 18(4):305-321. PubMed ID: 28846046 [TBL] [Abstract][Full Text] [Related]
15. Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia, and genuine high altitude. Woods DR; O'Hara JP; Boos CJ; Hodkinson PD; Tsakirides C; Hill NE; Jose D; Hawkins A; Phillipson K; Hazlerigg A; Arjomandkhah N; Gallagher L; Holdsworth D; Cooke M; Green NDC; Mellor A Eur J Appl Physiol; 2017 May; 117(5):893-900. PubMed ID: 28299447 [TBL] [Abstract][Full Text] [Related]
16. The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response. Kacin A; Golja P; Eiken O; Tipton MJ; Mekjavic IB Eur J Appl Physiol; 2007 Mar; 99(5):557-66. PubMed ID: 17242947 [TBL] [Abstract][Full Text] [Related]
17. White blood cell and hormonal responses to 4300 m altitude before and after intermittent altitude exposure. Beidleman BA; Muza SR; Fulco CS; Cymerman A; Staab JE; Sawka MN; Lewis SF; Skrinar GS Clin Sci (Lond); 2006 Aug; 111(2):163-9. PubMed ID: 16536730 [TBL] [Abstract][Full Text] [Related]
18. Cardiovascular responses to submaximal exercise in 7- to 9-yr-old boys and girls. Turley KR; Wilmore JH Med Sci Sports Exerc; 1997 Jun; 29(6):824-32. PubMed ID: 9219212 [TBL] [Abstract][Full Text] [Related]
19. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. Katayama K; Matsuo H; Ishida K; Mori S; Miyamura M High Alt Med Biol; 2003; 4(3):291-304. PubMed ID: 14561235 [TBL] [Abstract][Full Text] [Related]
20. Effect of simulated altitude erythrocythemia in women on hemoglobin flow rate during exercise. Robertson RJ; Gilcher R; Metz KF; Caspersen CJ; Allison TG; Abbott RA; Skrinar GS; Krause JR; Nixon PA J Appl Physiol (1985); 1988 Apr; 64(4):1644-9. PubMed ID: 3378998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]