These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27045456)
1. The release of silver nanoparticles from commercial toothbrushes. Mackevica A; Olsson ME; Hansen SF J Hazard Mater; 2017 Jan; 322(Pt A):270-275. PubMed ID: 27045456 [TBL] [Abstract][Full Text] [Related]
2. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related]
3. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples. Chang YJ; Shih YH; Su CH; Ho HC J Hazard Mater; 2017 Jan; 322(Pt A):95-104. PubMed ID: 27041441 [TBL] [Abstract][Full Text] [Related]
4. Detection of engineered silver nanoparticle contamination in pears. Zhang Z; Kong F; Vardhanabhuti B; Mustapha A; Lin M J Agric Food Chem; 2012 Oct; 60(43):10762-7. PubMed ID: 23082953 [TBL] [Abstract][Full Text] [Related]
5. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system. Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277 [TBL] [Abstract][Full Text] [Related]
6. Silver ion-imprinted magnetic adsorbent hyphenated to single particle-ICP-MS for separation and analysis of dissolved silver and silver nanoparticles in antibacterial gel extracts. Zhang M; Wang H; Wu Y; Yu X Anal Chim Acta; 2023 Oct; 1279():341846. PubMed ID: 37827657 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection. Nangmenyi G; Yue Z; Mehrabi S; Mintz E; Economy J Nanotechnology; 2009 Dec; 20(49):495705. PubMed ID: 19904023 [TBL] [Abstract][Full Text] [Related]
8. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat. Wagener S; Dommershausen N; Jungnickel H; Laux P; Mitrano D; Nowack B; Schneider G; Luch A Environ Sci Technol; 2016 Jun; 50(11):5927-34. PubMed ID: 27128362 [TBL] [Abstract][Full Text] [Related]
9. Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Aude-Garcia C; Villiers F; Collin-Faure V; Pernet-Gallay K; Jouneau PH; Sorieul S; Mure G; Gerdil A; Herlin-Boime N; Carrière M; Rabilloud T Nanotoxicology; 2016; 10(5):586-96. PubMed ID: 26554598 [TBL] [Abstract][Full Text] [Related]
10. An in vitro comparison of antimicrobial toothbrushes. Hamal JD; Hensley DM; Maller SC; Palazzolo DJ; Vandewalle KS Gen Dent; 2014; 62(6):e24-7. PubMed ID: 25369397 [TBL] [Abstract][Full Text] [Related]
11. Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry. Sung HK; Jo E; Kim E; Yoo SK; Lee JW; Kim PJ; Kim Y; Eom IC Chemosphere; 2018 Oct; 209():815-822. PubMed ID: 30114729 [TBL] [Abstract][Full Text] [Related]
12. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Peretyazhko TS; Zhang Q; Colvin VL Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014 [TBL] [Abstract][Full Text] [Related]
13. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
14. Determining the Concentration Dependent Transformations of Ag Nanoparticles in Complex Media: Using SP-ICP-MS and Au@Ag Core-Shell Nanoparticles as Tracers. Merrifield RC; Stephan C; Lead J Environ Sci Technol; 2017 Mar; 51(6):3206-3213. PubMed ID: 28248517 [TBL] [Abstract][Full Text] [Related]
15. Copper Drinking Water Pipes as a Previously Undocumented Source of Silver-Based Nanoparticles. Wimmer A; Beyerl J; Schuster M Environ Sci Technol; 2019 Nov; 53(22):13293-13301. PubMed ID: 31593441 [TBL] [Abstract][Full Text] [Related]
16. Impact of density of coating agent on antibacterial activity of silver nanoparticle impregnated plasma treated activated carbon. Biswas P; Bandyopadhyaya R J Environ Sci (China); 2018 May; 67():136-144. PubMed ID: 29778145 [TBL] [Abstract][Full Text] [Related]
17. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. Verleysen E; Van Doren E; Waegeneers N; De Temmerman PJ; Abi Daoud Francisco M; Mast J J Agric Food Chem; 2015 Apr; 63(13):3570-8. PubMed ID: 25768118 [TBL] [Abstract][Full Text] [Related]
18. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications. Maurer EI; Sharma M; Schlager JJ; Hussain SM Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466 [TBL] [Abstract][Full Text] [Related]
19. Size-controlled dissolution of organic-coated silver nanoparticles. Ma R; Levard C; Marinakos SM; Cheng Y; Liu J; Michel FM; Brown GE; Lowry GV Environ Sci Technol; 2012 Jan; 46(2):752-9. PubMed ID: 22142034 [TBL] [Abstract][Full Text] [Related]
20. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles. Merrifield RC; Stephan C; Lead JR Talanta; 2017 Jan; 162():130-134. PubMed ID: 27837808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]