These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27045573)

  • 1. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures.
    Rahimi M; Afshari A; Thormann E
    ACS Appl Mater Interfaces; 2016 May; 8(17):11147-53. PubMed ID: 27045573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sessile Droplet Freezing on Hydrophobic Structured Surfaces under Cold Ambient Conditions.
    Yamada Y; Onishi G; Horibe A
    Langmuir; 2019 Dec; 35(50):16401-16406. PubMed ID: 31747288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Ice Nucleation Studied with Single-Layer Graphene.
    Cline C; Wang H; Kong J; Li T; Liu J; Wegst UGK
    Langmuir; 2022 Dec; 38(49):15121-15131. PubMed ID: 36448835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of supercooled droplet freezing on surfaces.
    Jung S; Tiwari MK; Doan NV; Poulikakos D
    Nat Commun; 2012 Jan; 3():615. PubMed ID: 22233625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid.
    Ozbay S; Yuceel C; Erbil HY
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22067-77. PubMed ID: 26375386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Surface Energy on Freezing Temperature of Water.
    Zhang Y; Anim-Danso E; Bekele S; Dhinojwala A
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17583-90. PubMed ID: 27314147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance.
    Shen Y; Xie X; Xie Y; Tao J; Jiang J; Chen H; Lu Y; Xu Y
    Phys Chem Chem Phys; 2019 Sep; 21(36):19785-19794. PubMed ID: 31478533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention.
    Keshavarzi S; Momen G; Eberle P; Azimi Yancheshme A; Alvarez NJ; Jafari R
    J Colloid Interface Sci; 2024 Sep; 670():550-562. PubMed ID: 38776690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.