BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27045665)

  • 1. Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot.
    Xu W; Poon CC; Yam Y; Chiu PW
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27045665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.
    Sun Z; Wang Z; Phee SJ
    Comput Methods Programs Biomed; 2015 Apr; 119(2):77-87. PubMed ID: 25819033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on force and position control performance of the tendon sheath system with time-varying parameters and flexible robotic arms.
    Tang Y; Pan M; Lin Y; Liang K
    Int J Med Robot; 2023 Aug; 19(4):e2517. PubMed ID: 37042101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K-FLEX: A flexible robotic platform for scar-free endoscopic surgery.
    Hwang M; Kwon DS
    Int J Med Robot; 2020 Apr; 16(2):e2078. PubMed ID: 31945797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.
    Xu W; Chen J; Lau HYK; Ren H
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of backlash hysteresis of surgical tool bending joints on task performance in teleoperated flexible endoscopic robot.
    Kim H; Hwang M; Kim J; You JM; Lim CS; Kwon DS
    Int J Med Robot; 2020 Feb; 16(1):e2047. PubMed ID: 31675461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission Characteristics Analysis and Compensation Control of Double Tendon-sheath Driven Manipulator.
    Wu H; Yin M; Xu Z; Zhao Z; Han W
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sigmoidal Auxiliary Tendon-Driven Mechanism Reinforcing Structural Stiffness of Hyper-Redundant Manipulator for Endoscopic Surgery.
    Kim H; You JM; Hwang M; Kyung KU; Kwon DS
    Soft Robot; 2023 Apr; 10(2):234-245. PubMed ID: 35763840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.
    Song S; Zhang C; Liu L; Meng MQ
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):241-251. PubMed ID: 28983750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images.
    Cabras P; Nageotte F; Zanne P; Doignon C
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development and error analysis of a kinematic parameters based spatial positioning method for an orthopedic navigation robot system.
    Pei B; Zhu G; Wang Y; Qiao H; Chen X; Wang B; Li X; Zhang W; Liu W; Fan Y
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27723229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots.
    Liang Y; Du Z; Wang W; Sun L
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28974011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of a hybrid robotic system for computer-assisted interventions in dynamic environments.
    Smoljkic G; Borghesan G; Devreker A; Poorten EV; Rosa B; De Praetere H; De Schutter J; Reynaerts D; Sloten JV
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1371-83. PubMed ID: 26662203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic endoscopy. A review of the literature.
    Visconti TAC; Otoch JP; Artifon ELA
    Acta Cir Bras; 2020; 35(2):e202000206. PubMed ID: 32348403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible robotic endoscopy: current and original devices.
    Kume K
    Comput Assist Surg (Abingdon); 2016 Dec; 21(1):150-159. PubMed ID: 27973963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the endoscopic range of motion for head and neck surgery using the SOLOASSIST endoscope holder.
    Kristin J; Geiger R; Kraus P; Klenzner T
    Int J Med Robot; 2015 Dec; 11(4):418-23. PubMed ID: 25640259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo experiments of a surgical robot with vision field control for Single Port Endoscopic Surgery.
    Sekiguchi Y; Kobayashi Y; Watanabe H; Tomono Y; Noguchi T; Takahashi Y; Toyoda K; Uemura M; Ieiri S; Ohdaira T; Tomikawa M; Hashizume M; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7045-8. PubMed ID: 22255961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2019 Aug; 15(4):e2007. PubMed ID: 31050135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.