These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27045665)

  • 61. Feasibility of automated target centralization in colonoscopy.
    van der Stap N; Rozeboom ED; Pullens HJ; van der Heijden F; Broeders IA
    Int J Comput Assist Radiol Surg; 2016 Mar; 11(3):457-65. PubMed ID: 26450108
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Virtually transparent surgical instruments in endoscopic surgery with augmentation of obscured regions.
    Koreeda Y; Kobayashi Y; Ieiri S; Nishio Y; Kawamura K; Obata S; Souzaki R; Hashizume M; Fujie MG
    Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1927-36. PubMed ID: 27038964
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dynamic model and control for a cable-driven continuum manipulator used for minimally invasive surgery.
    Qi F; Chen B; Gao S; She S
    Int J Med Robot; 2021 Jun; 17(3):e2234. PubMed ID: 33497540
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation.
    Kato T; Okumura I; Kose H; Takagi K; Hata N
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):589-602. PubMed ID: 26476639
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery.
    Kobayashi Y; Sekiguchi Y; Noguchi T; Takahashi Y; Liu Q; Oguri S; Toyoda K; Uemura M; Ieiri S; Tomikawa M; Ohdaira T; Hashizume M; Fujie MG
    Int J Med Robot; 2015 Jun; 11(2):235-46. PubMed ID: 24965141
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of a Real-Time 6-DOF Motion-Tracking System for Robotic Computer-Assisted Implant Surgery.
    Sin M; Cho JH; Lee H; Kim K; Woo HS; Park JM
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904653
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation.
    Eslami S; Shang W; Li G; Patel N; Fischer GS; Tokuda J; Hata N; Tempany CM; Iordachita I
    Int J Med Robot; 2016 Jun; 12(2):199-213. PubMed ID: 26111458
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Towards robust 3D visual tracking for motion compensation in beating heart surgery.
    Richa R; Bó AP; Poignet P
    Med Image Anal; 2011 Jun; 15(3):302-15. PubMed ID: 21277821
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Three-dimensional posture estimation of robot forceps using endoscope with convolutional neural network.
    Mikada T; Kanno T; Kawase T; Miyazaki T; Kawashima K
    Int J Med Robot; 2020 Apr; 16(2):e2062. PubMed ID: 31913577
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Foot-controlled robotic-enabled endoscope holder for endoscopic sinus surgery: A cadaveric feasibility study.
    Chan JY; Leung I; Navarro-Alarcon D; Lin W; Li P; Lee DL; Liu YH; Tong MC
    Laryngoscope; 2016 Mar; 126(3):566-9. PubMed ID: 26372615
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characteristics of locomotion efficiency of an expanding-extending robotic endoscope in the intestinal environment.
    He S; Yan G; Wang Z; Gao J; Yang K
    Proc Inst Mech Eng H; 2015 Jul; 229(7):515-23. PubMed ID: 26130309
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Feasibility of infrared tracking of beating heart motion for robotic assisted beating heart surgery.
    Mansouri S; Farahmand F; Vossoughi G; Ghavidel AA; Rezayat M
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29063675
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of respiration-induced vertebral motion in prone-positioned patients during general anaesthesia.
    Liu Y; Zeng C; Fan M; Hu L; Ma C; Tian W
    Int J Med Robot; 2016 Jun; 12(2):214-8. PubMed ID: 26147226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of a medical robot system for minimally invasive surgery.
    Feng M; Fu Y; Pan B; Liu C
    Int J Med Robot; 2012 Mar; 8(1):85-96. PubMed ID: 21990214
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Positioning systems for endoscopic solo surgery].
    Arezzo A; Testa T; Ulmer F; Schurr MO; Degregori M; Buess GF
    Minerva Chir; 2000 Sep; 55(9):635-41. PubMed ID: 11155479
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Impedance and admittance control for respiratory-motion compensation during robotic needle insertion - a preliminary test.
    Kim YJ; Seo JH; Kim HR; Kim KG
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 27915466
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An Accelerated Finite-Time Convergent Neural Network for Visual Servoing of a Flexible Surgical Endoscope With Physical and RCM Constraints.
    Li W; Chiu PWY; Li Z
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5272-5284. PubMed ID: 32011270
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Robust feature tracking on the beating heart for a robotic-guided endoscope.
    Elhawary H; Popovic A
    Int J Med Robot; 2011 Dec; 7(4):459-68. PubMed ID: 22113979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.