These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). Tato T; Salgueiro-González N; León VM; González S; Beiras R Environ Pollut; 2018 Jan; 232():173-182. PubMed ID: 28951039 [TBL] [Abstract][Full Text] [Related]
23. Effects of triclosan on aquatic invertebrates in tropics and the influence of pH on its toxicity on microalgae. Khatikarn J; Satapornvanit K; Price OR; Van den Brink PJ Environ Sci Pollut Res Int; 2018 May; 25(14):13244-13253. PubMed ID: 27543130 [TBL] [Abstract][Full Text] [Related]
24. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380 [TBL] [Abstract][Full Text] [Related]
25. Acute/chronic triclosan exposure induces downregulation of m Qian Q; Pu Q; Li X; Liu X; Ni A; Han X; Wang Z; Wang X; Yan J; Wang H Chemosphere; 2024 Mar; 352():141395. PubMed ID: 38342143 [TBL] [Abstract][Full Text] [Related]
26. Biouptake, toxicity and biotransformation of triclosan in diatom Cyclotella sp. and the influence of humic acid. Ding T; Lin K; Bao L; Yang M; Li J; Yang B; Gan J Environ Pollut; 2018 Mar; 234():231-242. PubMed ID: 29175687 [TBL] [Abstract][Full Text] [Related]
27. Waterborne pharmaceutical uptake and toxicity is modified by pH and dissolved organic carbon in zebrafish. Alsop D; Wilson JY Aquat Toxicol; 2019 May; 210():11-18. PubMed ID: 30818111 [TBL] [Abstract][Full Text] [Related]
28. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. Sheng C; Zhang S; Zhang Y J Hazard Mater; 2021 Jan; 402():123733. PubMed ID: 33254764 [TBL] [Abstract][Full Text] [Related]
29. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos. Parenti CC; Ghilardi A; Della Torre C; Mandelli M; Magni S; Del Giacco L; Binelli A Sci Total Environ; 2019 Feb; 650(Pt 2):1752-1758. PubMed ID: 30273734 [TBL] [Abstract][Full Text] [Related]
30. Potential effects of triclosan on spatial displacement and local population decline of the fish Poecilia reticulata using a non-forced system. Silva DCVR; Araújo CVM; López-Doval JC; Neto MB; Silva FT; Paiva TCB; Pompêo MLM Chemosphere; 2017 Oct; 184():329-336. PubMed ID: 28605703 [TBL] [Abstract][Full Text] [Related]
31. Triclosan: environmental exposure, toxicity and mechanisms of action. Dann AB; Hontela A J Appl Toxicol; 2011 May; 31(4):285-311. PubMed ID: 21462230 [TBL] [Abstract][Full Text] [Related]
32. Dissolved organic carbon reduces the toxicity of aluminum to three tropical freshwater organisms. Trenfield MA; Markich SJ; Ng JC; Noller B; van Dam RA Environ Toxicol Chem; 2012 Feb; 31(2):427-36. PubMed ID: 22105345 [TBL] [Abstract][Full Text] [Related]
33. Effect of temperature on triclosan toxicity in Pangasianodon hypophthalmus (Sauvage, 1878): Hematology, biochemistry and genotoxicity evaluation. Paul T; Shukla SP; Kumar K; Poojary N; Kumar S Sci Total Environ; 2019 Jun; 668():104-114. PubMed ID: 30852190 [TBL] [Abstract][Full Text] [Related]
34. Embryonic exposure to environmentally relevant concentrations of triclosan impairs foraging efficiency in zebrafish larvae. Wirt H; Botka R; Perez KE; King-Heiden T Environ Toxicol Chem; 2018 Dec; 37(12):3124-3133. PubMed ID: 30264895 [TBL] [Abstract][Full Text] [Related]
35. Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. Riva C; Cristoni S; Binelli A Aquat Toxicol; 2012 Aug; 118-119():62-71. PubMed ID: 22522169 [TBL] [Abstract][Full Text] [Related]
36. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Dhillon GS; Kaur S; Pulicharla R; Brar SK; Cledón M; Verma M; Surampalli RY Int J Environ Res Public Health; 2015 May; 12(5):5657-84. PubMed ID: 26006133 [TBL] [Abstract][Full Text] [Related]
37. Ecotoxicogenomic analysis of zebrafish embryos exposed to triclosan and mixture triclosan and methyl triclosan using suppression subtractive hybridization and next-generation sequencing. Fu J; Gong Z; Bae S J Hazard Mater; 2021 Jul; 414():125450. PubMed ID: 33676256 [TBL] [Abstract][Full Text] [Related]
38. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Bedoux G; Roig B; Thomas O; Dupont V; Le Bot B Environ Sci Pollut Res Int; 2012 May; 19(4):1044-65. PubMed ID: 22057832 [TBL] [Abstract][Full Text] [Related]
39. The role of dissolved organic carbon concentration and composition on nickel toxicity to early life-stages of the blue mussel Mytilus edulis and purple sea urchin Strongylocentrotus purpuratus. Blewett TA; Dow EM; Wood CM; McGeer JC; Smith DS Ecotoxicol Environ Saf; 2018 Sep; 160():162-170. PubMed ID: 29804012 [TBL] [Abstract][Full Text] [Related]
40. Sorption to dissolved humic acid and its impacts on the toxicity of imidazolium based ionic liquids. Zhang Z; Liu JF; Cai XQ; Jiang WW; Luo WR; Jiang GB Environ Sci Technol; 2011 Feb; 45(4):1688-94. PubMed ID: 21235234 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]