These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27045835)
1. A Class-Information-Based Sparse Component Analysis Method to Identify Differentially Expressed Genes on RNA-Seq Data. Liu JX; Xu Y; Gao YL; Zheng CH; Wang D; Zhu Q IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):392-8. PubMed ID: 27045835 [TBL] [Abstract][Full Text] [Related]
2. Differential expression analysis on RNA-Seq count data based on penalized matrix decomposition. Liu JX; Gao YL; Xu Y; Zheng CH; You J IEEE Trans Nanobioscience; 2014 Mar; 13(1):12-8. PubMed ID: 24594510 [TBL] [Abstract][Full Text] [Related]
3. DegPack: a web package using a non-parametric and information theoretic algorithm to identify differentially expressed genes in multiclass RNA-seq samples. An J; Kim K; Chae H; Kim S Methods; 2014 Oct; 69(3):306-14. PubMed ID: 24981074 [TBL] [Abstract][Full Text] [Related]
4. Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. Al Seesi S; Tiagueu YT; Zelikovsky A; Măndoiu II BMC Genomics; 2014; 15 Suppl 8(Suppl 8):S2. PubMed ID: 25435284 [TBL] [Abstract][Full Text] [Related]
5. Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates. Yoon S; Kim SY; Nam D PLoS One; 2016; 11(11):e0165919. PubMed ID: 27829002 [TBL] [Abstract][Full Text] [Related]
6. A fuzzy method for RNA-Seq differential expression analysis in presence of multireads. Consiglio A; Mencar C; Grillo G; Marzano F; Caratozzolo MF; Liuni S BMC Bioinformatics; 2016 Nov; 17(Suppl 12):345. PubMed ID: 28185579 [TBL] [Abstract][Full Text] [Related]
7. LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data. Lin B; Zhang LF; Chen X BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S7. PubMed ID: 25560842 [TBL] [Abstract][Full Text] [Related]
8. Detecting differentially expressed genes by smoothing effect of gene length on variance estimation. Tang J; Wang F J Bioinform Comput Biol; 2015 Dec; 13(6):1542004. PubMed ID: 26608751 [TBL] [Abstract][Full Text] [Related]
9. Robust Principal Component Analysis Regularized by Truncated Nuclear Norm for Identifying Differentially Expressed Genes. Wang YX; Gao YL; Liu JX; Kong XZ; Li HJ IEEE Trans Nanobioscience; 2017 Sep; 16(6):447-454. PubMed ID: 28692983 [TBL] [Abstract][Full Text] [Related]
10. LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates. Gim J; Won S; Park T PLoS One; 2016; 11(8):e0159182. PubMed ID: 27532300 [TBL] [Abstract][Full Text] [Related]
11. A two-step integrated approach to detect differentially expressed genes in RNA-Seq data. Al Mahi N; Begum M J Bioinform Comput Biol; 2016 Dec; 14(6):1650034. PubMed ID: 27774870 [TBL] [Abstract][Full Text] [Related]
12. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells. Chen C; Le H; Goudar CT Biotechnol Prog; 2015; 31(5):1150-62. PubMed ID: 26150012 [TBL] [Abstract][Full Text] [Related]
13. How to analyze gene expression using RNA-sequencing data. Ramsköld D; Kavak E; Sandberg R Methods Mol Biol; 2012; 802():259-74. PubMed ID: 22130886 [TBL] [Abstract][Full Text] [Related]
14. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data. Zhang L; Liu XJ Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27323111 [TBL] [Abstract][Full Text] [Related]
15. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Feng J; Meyer CA; Wang Q; Liu JS; Shirley Liu X; Zhang Y Bioinformatics; 2012 Nov; 28(21):2782-8. PubMed ID: 22923299 [TBL] [Abstract][Full Text] [Related]
16. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Kvam VM; Liu P; Si Y Am J Bot; 2012 Feb; 99(2):248-56. PubMed ID: 22268221 [TBL] [Abstract][Full Text] [Related]
17. Discovering What Dimensionality Reduction Really Tells Us About RNA-Seq Data. Simmons S; Peng J; Bienkowska J; Berger B J Comput Biol; 2015 Aug; 22(8):715-28. PubMed ID: 26098139 [TBL] [Abstract][Full Text] [Related]
18. Modifying SAMseq to account for asymmetry in the distribution of effect sizes when identifying differentially expressed genes. Kotoka E; Orr M Stat Appl Genet Mol Biol; 2017 Nov; 16(5-6):291-312. PubMed ID: 29077555 [TBL] [Abstract][Full Text] [Related]
19. A note on an exon-based strategy to identify differentially expressed genes in RNA-seq experiments. Laiho A; Elo LL PLoS One; 2014; 9(12):e115964. PubMed ID: 25541961 [TBL] [Abstract][Full Text] [Related]
20. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Ballouz S; Verleyen W; Gillis J Bioinformatics; 2015 Jul; 31(13):2123-30. PubMed ID: 25717192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]