These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27045910)

  • 21. Subjective Evaluation of a Semi-Automatic Optical See-Through Head-Mounted Display Calibration Technique.
    Moser K; Itoh Y; Oshima K; Swan JE; Klinker G; Sandor C
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):491-500. PubMed ID: 26357099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HySAR: Hybrid Material Rendering by an Optical See-Through Head-Mounted Display with Spatial Augmented Reality Projection.
    Hamasaki T; Itoh Y; Hiroi Y; Iwai D; Sugimoto M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1457-1466. PubMed ID: 29543164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restoring the Awareness in the Occluded Visual Field for Optical See-Through Head-Mounted Displays.
    Qian L; Plopski A; Navab N; Kazanzides P
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2936-2946. PubMed ID: 30188830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical See-through Head-mounted Display (OST-HMD)-assisted Needle Biopsy for Breast Tumor: A Technical Innovation.
    Kashiwagi S; Asano Y; Goto W; Morisaki T; Shibutani M; Tanaka H; Hirakawa K; Ohira M
    In Vivo; 2022; 36(2):848-852. PubMed ID: 35241541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays.
    Langlotz T; Cook M; Regenbrecht H
    IEEE Trans Vis Comput Graph; 2016 Nov; 22(11):2385-94. PubMed ID: 27479973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential effects of head-mounted displays on visual performance.
    Schega L; Hamacher D; Erfuth S; Behrens-Baumann W; Reupsch J; Hoffmann MB
    Ergonomics; 2014; 57(1):1-11. PubMed ID: 24219018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural perspective projections for head-mounted displays.
    Steinicke F; Bruder G; Kuhl S; Willemsen P; Lappe M; Hinrichs KH
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):888-99. PubMed ID: 21546652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A head-mounted operating binocular for augmented reality visualization in medicine--design and initial evaluation.
    Birkfellner W; Figl M; Huber K; Watzinger F; Wanschitz F; Hummel J; Hanel R; Greimel W; Homolka P; Ewers R; Bergmann H
    IEEE Trans Med Imaging; 2002 Aug; 21(8):991-7. PubMed ID: 12472271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Augmenting Performance: A Systematic Review of Optical See-Through Head-Mounted Displays in Surgery.
    Doughty M; Ghugre NR; Wright GA
    J Imaging; 2022 Jul; 8(7):. PubMed ID: 35877647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Advantage of Using an Optical See-Through Head-Mounted Display in Ultrasonography-Guided Needle Biopsy Procedures: A Prospective Randomized Study.
    Shimizu T; Oba T; Ito KI
    J Clin Med; 2023 Jan; 12(2):. PubMed ID: 36675443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens.
    Hong JY; Lee CK; Lee S; Lee B; Yoo D; Jang C; Kim J; Jeong J; Lee B
    Sci Rep; 2017 Jun; 7(1):2753. PubMed ID: 28584247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface.
    Zheng Z; Liu X; Li H; Xu L
    Appl Opt; 2010 Jul; 49(19):3661-8. PubMed ID: 20648131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impacts of lens and stereo camera separation on perceived slant in Virtual Reality head-mounted displays.
    Tong J; Wilcox LM; Allison RS
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3759-3766. PubMed ID: 36048994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of an optical see-through light-field near-eye display using a discrete lenslet array.
    Yao C; Cheng D; Yang T; Wang Y
    Opt Express; 2018 Jul; 26(14):18292-18301. PubMed ID: 30114010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of eye response using a wearable display with automatic interpupillary distance adjustment.
    Lee H; Kim J; Son JY; Kim I; Noh J; Yoon YJ; Yoon M
    Opt Express; 2022 Feb; 30(5):8151-8164. PubMed ID: 35299562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Matching and reaching depth judgments with real and augmented reality targets.
    Swan JE; Singh G; Ellis SR
    IEEE Trans Vis Comput Graph; 2015 Nov; 21(11):1289-98. PubMed ID: 26340777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Examining the Results of Virtual Reality-Based Egocentric Distance Estimation Tests Based on Immersion Level.
    Guzsvinecz T; Perge E; Szűcs J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Depth perception in virtual reality: distance estimations in peri- and extrapersonal space.
    Armbrüster C; Wolter M; Kuhlen T; Spijkers W; Fimm B
    Cyberpsychol Behav; 2008 Feb; 11(1):9-15. PubMed ID: 18275307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Focal Distance, Age, and Brightness on Near-Field Augmented Reality Depth Matching.
    Singh G; Ellis SR; Swan JE
    IEEE Trans Vis Comput Graph; 2020 Feb; 26(2):1385-1398. PubMed ID: 30222576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A psychophysical evaluation of near-field head-related transfer functions synthesized using a distance variation function.
    Kan A; Jin C; van Schaik A
    J Acoust Soc Am; 2009 Apr; 125(4):2233-42. PubMed ID: 19354399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.