BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27045939)

  • 1. On-chip droplet production regimes using surface acoustic waves.
    Brenker JC; Collins DJ; Van Phan H; Alan T; Neild A
    Lab Chip; 2016 Apr; 16(9):1675-83. PubMed ID: 27045939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation.
    Collins DJ; Alan T; Helmerson K; Neild A
    Lab Chip; 2013 Aug; 13(16):3225-31. PubMed ID: 23784263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-demand sample injection: combining acoustic actuation with a tear-drop shaped nozzle to generate droplets with precise spatial and temporal control.
    Brenker JC; Devendran C; Neild A; Alan T
    Lab Chip; 2020 Jan; 20(2):253-265. PubMed ID: 31854405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoropolymer surface coatings to control droplets in microfluidic devices.
    Riche CT; Zhang C; Gupta M; Malmstadt N
    Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic step-emulsification in axisymmetric geometry.
    Chakraborty I; Ricouvier J; Yazhgur P; Tabeling P; Leshansky AM
    Lab Chip; 2017 Oct; 17(21):3609-3620. PubMed ID: 28944810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions.
    Opalski AS; Makuch K; Lai YK; Derzsi L; Garstecki P
    Lab Chip; 2019 Mar; 19(7):1183-1192. PubMed ID: 30843018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustofluidic generation of droplets with tunable chemical concentrations.
    Park J; Destgeer G; Afzal M; Sung HJ
    Lab Chip; 2020 Oct; 20(21):3922-3929. PubMed ID: 33026382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface acoustic wave enabled pipette on a chip.
    Sesen M; Devendran C; Malikides S; Alan T; Neild A
    Lab Chip; 2017 Jan; 17(3):438-447. PubMed ID: 27995242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile on-demand droplet generation for controlled encapsulation.
    Rhee M; Liu P; Meagher RJ; Light YK; Singh AK
    Biomicrofluidics; 2014 May; 8(3):034112. PubMed ID: 25379072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet-based microfluidics at the femtolitre scale.
    Leman M; Abouakil F; Griffiths AD; Tabeling P
    Lab Chip; 2015 Feb; 15(3):753-65. PubMed ID: 25428861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.
    Rambach RW; Biswas P; Yadav A; Garstecki P; Franke T
    Analyst; 2018 Feb; 143(4):843-849. PubMed ID: 29234760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centrifugal Step Emulsification: How Buoyancy Enables High Generation Rates of Monodisperse Droplets.
    Schulz M; von Stetten F; Zengerle R; Paust N
    Langmuir; 2019 Jul; 35(30):9809-9815. PubMed ID: 31283246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and Numerical Study on the Droplet Formation in a Cross-Flow Microchannel.
    Li DY; Li XB; Li FC
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2964-9. PubMed ID: 26353521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.