These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27045973)

  • 1. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.
    Gharajehdaghipour T; Roth JD; Fafard PM; Markham JH
    Sci Rep; 2016 Apr; 6():24020. PubMed ID: 27045973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foxes fertilize the subarctic forest and modify vegetation through denning.
    Lang JA; Roth JD; Markham JH
    Sci Rep; 2021 Feb; 11(1):3031. PubMed ID: 33542391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interference in the tundra predator guild studied using local ecological knowledge.
    Ehrich D; Strømeng MA; Killengreen ST
    Oecologia; 2016 Apr; 180(4):1195-203. PubMed ID: 26686344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal, Russia.
    Ehrich D; Cerezo M; Rodnikova AY; Sokolova NA; Fuglei E; Shtro VG; Sokolov AA
    BMC Ecol; 2017 Sep; 17(1):32. PubMed ID: 28915877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduced predators transform subarctic islands from grassland to tundra.
    Croll DA; Maron JL; Estes JA; Danner EM; Byrd GV
    Science; 2005 Mar; 307(5717):1959-61. PubMed ID: 15790855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predator behaviour and predation risk in the heterogeneous Arctic environment.
    Lecomte N; Careau V; Gauthier G; Giroux JF
    J Anim Ecol; 2008 May; 77(3):439-47. PubMed ID: 18248387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.
    Pokrovsky I; Ehrich D; Ims RA; Kondratyev AV; Kruckenberg H; Kulikova O; Mihnevich J; Pokrovskaya L; Shienok A
    PLoS One; 2015; 10(2):e0118740. PubMed ID: 25692786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predator co-occurrence in alpine and Arctic tundra in relation to fluctuating prey.
    Rød-Eriksen L; Killengreen ST; Ehrich D; Ims RA; Herfindal I; Landa AM; Eide NE
    J Anim Ecol; 2023 Mar; 92(3):635-647. PubMed ID: 36528820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic.
    Abbott BW; Rocha AV; Shogren A; Zarnetske JP; Iannucci F; Bowden WB; Bratsman SP; Patch L; Watts R; Fulweber R; Frei RJ; Huebner AM; Ludwig SM; Carling GT; O'Donnell JA
    Glob Chang Biol; 2021 Apr; 27(7):1408-1430. PubMed ID: 33394532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.
    Gough L; Moore JC; Shaver GR; Simpson RT; Johnson DR
    Ecology; 2012 Jul; 93(7):1683-94. PubMed ID: 22919914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feast to famine: Sympatric predators respond differently to seasonal prey scarcity on the low Arctic tundra.
    Warret Rodrigues C; Roth JD
    Ecol Evol; 2023 Mar; 13(3):e9951. PubMed ID: 36993144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seaduck engineers in the Arctic Archipelago: nesting eiders deliver marine nutrients and transform the chemistry of island soils, plants, and ponds.
    Clyde N; Hargan KE; Forbes MR; Iverson SA; Blais JM; Smol JP; Bump JK; Gilchrist HG
    Oecologia; 2021 Apr; 195(4):1041-1052. PubMed ID: 33675409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G
    Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.
    Jiang Y; Rastetter EB; Shaver GR; Rocha AV; Zhuang Q; Kwiatkowski BL
    Ecol Appl; 2017 Jan; 27(1):105-117. PubMed ID: 27898193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arctic and red fox population responses to climate and cryosphere changes at the Arctic's edge.
    Verstege JS; Johnson-Bice SM; Roth JD
    Oecologia; 2023 Jul; 202(3):589-599. PubMed ID: 37458813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic model of functional response provides new insights into indirect interactions among arctic tundra prey.
    Beardsell A; Gravel D; Clermont J; Berteaux D; Gauthier G; Bêty J
    Ecology; 2022 Aug; 103(8):e3734. PubMed ID: 35466413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangling the relative influences of global drivers of change in biodiversity: A study of the twentieth-century red fox expansion into the Canadian Arctic.
    Gallant D; Lecomte N; Berteaux D
    J Anim Ecol; 2020 Feb; 89(2):565-576. PubMed ID: 31407338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra.
    Killengreen ST; Lecomte N; Ehrich D; Schott T; Yoccoz NG; Ims RA
    J Anim Ecol; 2011 Sep; 80(5):1049-60. PubMed ID: 21477201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils.
    Fornara DA; Banin L; Crawley MJ
    Glob Chang Biol; 2013 Dec; 19(12):3848-57. PubMed ID: 23907927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population.
    Eide NE; Stien A; Prestrud P; Yoccoz NG; Fuglei E
    J Anim Ecol; 2012 May; 81(3):640-8. PubMed ID: 22211323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.