These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27046003)
1. Instrument modifications that produced reduced plate heights <2 with sub-2 μm particles and 95% of theoretical efficiency at k=2 in supercritical fluid chromatography. Berger TA J Chromatogr A; 2016 Apr; 1444():129-44. PubMed ID: 27046003 [TBL] [Abstract][Full Text] [Related]
2. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures. Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350 [TBL] [Abstract][Full Text] [Related]
3. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a 2.6 μm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 μm totally porous silica. Berger TA J Chromatogr A; 2011 Jul; 1218(28):4559-68. PubMed ID: 21628062 [TBL] [Abstract][Full Text] [Related]
5. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. Lesellier E J Chromatogr A; 2012 Mar; 1228():89-98. PubMed ID: 22192562 [TBL] [Abstract][Full Text] [Related]
6. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar. Berger TA J Chromatogr A; 2016 Dec; 1475():86-94. PubMed ID: 27837997 [TBL] [Abstract][Full Text] [Related]
7. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide. Berger TA J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869 [TBL] [Abstract][Full Text] [Related]
8. Efficiency of supercritical fluid chromatography columns in different thermal environments. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158 [TBL] [Abstract][Full Text] [Related]
9. Kinetic performance of a 50mm long 1.8μm chiral column in supercritical fluid chromatography. Berger TA J Chromatogr A; 2016 Aug; 1459():136-144. PubMed ID: 27423775 [TBL] [Abstract][Full Text] [Related]
10. Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation. Lesellier E; Latos A; de Oliveira AL J Chromatogr A; 2014 Jan; 1327():141-8. PubMed ID: 24411089 [TBL] [Abstract][Full Text] [Related]
11. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. Gritti F; Fogwill M; Gilar M; Jarrell JA J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377 [TBL] [Abstract][Full Text] [Related]
12. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography. De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2015 Jul; 1403():132-7. PubMed ID: 26054561 [TBL] [Abstract][Full Text] [Related]
13. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography. Zauner J; Lusk R; Koski S; Poe DP J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122 [TBL] [Abstract][Full Text] [Related]
14. Occurrence of turbulent flow conditions in supercritical fluid chromatography. De Pauw R; Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Sep; 1361():277-85. PubMed ID: 25145564 [TBL] [Abstract][Full Text] [Related]
15. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size and varied flow rates. Lesellier E; Fougere L; Poe DP J Chromatogr A; 2011 Apr; 1218(15):2058-64. PubMed ID: 21232748 [TBL] [Abstract][Full Text] [Related]
16. Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. Grand-Guillaume Perrenoud A; Hamman C; Goel M; Veuthey JL; Guillarme D; Fekete S J Chromatogr A; 2013 Nov; 1314():288-97. PubMed ID: 24070625 [TBL] [Abstract][Full Text] [Related]
17. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography. Poe DP; Schroden JJ J Chromatogr A; 2009 Nov; 1216(45):7915-26. PubMed ID: 19767007 [TBL] [Abstract][Full Text] [Related]
18. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2011 Sep; 1218(37):6531-9. PubMed ID: 21821256 [TBL] [Abstract][Full Text] [Related]
19. The Joule-Thomson coefficient as a criterion for efficient operating conditions in supercritical fluid chromatography. Poe DP; Helmueller S; Kobany S; Feldhacker H; Kaczmarski K J Chromatogr A; 2017 Jan; 1482():76-96. PubMed ID: 28043691 [TBL] [Abstract][Full Text] [Related]
20. Preliminary kinetic evaluation of an immobilized polysaccharide sub-2μm column using a low dispersion supercritical fluid chromatograph. Berger TA J Chromatogr A; 2017 Aug; 1510():82-88. PubMed ID: 28652002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]