BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27046133)

  • 1. Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles.
    Lassenberger A; Bixner O; Gruenewald T; Lichtenegger H; Zirbs R; Reimhult E
    Langmuir; 2016 May; 32(17):4259-69. PubMed ID: 27046133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melt-grafting for the synthesis of core-shell nanoparticles with ultra-high dispersant density.
    Zirbs R; Lassenberger A; Vonderhaid I; Kurzhals S; Reimhult E
    Nanoscale; 2015 Jul; 7(25):11216-25. PubMed ID: 26061616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible Glyconanoparticles by Grafting Sophorolipid Monolayers on Monodispersed Iron Oxide Nanoparticles.
    Lassenberger A; Scheberl A; Batchu KC; Cristiglio V; Grillo I; Hermida-Merino D; Reimhult E; Baccile N
    ACS Appl Bio Mater; 2019 Jul; 2(7):3095-3107. PubMed ID: 35030801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.
    Abedin MR; Umapathi S; Mahendrakar H; Laemthong T; Coleman H; Muchangi D; Santra S; Nath M; Barua S
    J Nanobiotechnology; 2018 Oct; 16(1):80. PubMed ID: 30316298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes and Cells.
    Gal N; Lassenberger A; Herrero-Nogareda L; Scheberl A; Charwat V; Kasper C; Reimhult E
    ACS Biomater Sci Eng; 2017 Mar; 3(3):249-259. PubMed ID: 33465924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting.
    Bronstein LM; Shtykova EV; Malyutin A; Dyke JC; Gunn E; Gao X; Stein B; Konarev PV; Dragnea B; Svergun DI
    J Phys Chem C Nanomater Interfaces; 2010 Dec; 114(50):21900-21907. PubMed ID: 21221425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.
    Kurzhals S; Zirbs R; Reimhult E
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19342-52. PubMed ID: 26270412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, Characterization, and Cytotoxicity Evaluation of Polyethylene Glycol-Coated Iron Oxide Nanoparticles for Radiotherapy Application.
    Anuje M; Pawaskar PN; Khot V; Sivan A; Jadhav S; Meshram J; Thombare B
    J Med Phys; 2021; 46(3):154-161. PubMed ID: 34703099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.
    Davis K; Qi B; Witmer M; Kitchens CL; Powell BA; Mefford OT
    Langmuir; 2014 Sep; 30(36):10918-25. PubMed ID: 25137089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.
    Malyutin AG; Cheng H; Sanchez-Felix OR; Carlson K; Stein BD; Konarev PV; Svergun DI; Dragnea B; Bronstein LM
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12089-98. PubMed ID: 25989427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles.
    Bixner O; Lassenberger A; Baurecht D; Reimhult E
    Langmuir; 2015 Aug; 31(33):9198-204. PubMed ID: 26226071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications.
    Amstad E; Textor M; Reimhult E
    Nanoscale; 2011 Jul; 3(7):2819-43. PubMed ID: 21629911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Surface Modification of β-Cu
    Abbas G; Pandey G; Singh KB; Gautam N
    ACS Omega; 2021 Nov; 6(44):29380-29393. PubMed ID: 34778611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design.
    Braim FS; Razak NNANA; Aziz AA; Dheyab MA; Ismael LQ
    Ultrason Sonochem; 2023 May; 95():106371. PubMed ID: 36934677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.
    Mahdavi M; Ahmad MB; Haron MJ; Namvar F; Nadi B; Rahman MZ; Amin J
    Molecules; 2013 Jun; 18(7):7533-48. PubMed ID: 23807578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant.
    Mondini S; Drago C; Ferretti AM; Puglisi A; Ponti A
    Nanotechnology; 2013 Mar; 24(10):105702. PubMed ID: 23416923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.