These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 27046133)
41. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Hufschmid R; Arami H; Ferguson RM; Gonzales M; Teeman E; Brush LN; Browning ND; Krishnan KM Nanoscale; 2015 Jul; 7(25):11142-54. PubMed ID: 26059262 [TBL] [Abstract][Full Text] [Related]
42. Poly(acrylic acid) capped iron oxide nanoparticles via ligand exchange with antibacterial properties for biofilm applications. Nie L; Chang P; Ji C; Zhang F; Zhou Q; Sun M; Sun Y; Politis C; Shavandi A Colloids Surf B Biointerfaces; 2021 Jan; 197():111385. PubMed ID: 33049660 [TBL] [Abstract][Full Text] [Related]
43. Synthesis of thermo-responsive nanocomposites of superparamagnetic cobalt nanoparticles/poly(N-isopropylacrylamide). Tan L; Liu B; Siemensmeyer K; Glebe U; Böker A J Colloid Interface Sci; 2018 Sep; 526():124-134. PubMed ID: 29729424 [TBL] [Abstract][Full Text] [Related]
44. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand. Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031 [TBL] [Abstract][Full Text] [Related]
45. Polymeric Reactor for the Synthesis of Superparamagnetic-Thermal Treatment of Breast Cancer. Alhasan AH; Fardous RS; Alsudir SA; Majrashi MA; Alghamdi WM; Alsharaeh EH; Almalik AM Mol Pharm; 2019 Aug; 16(8):3577-3587. PubMed ID: 31291120 [TBL] [Abstract][Full Text] [Related]
46. Multifunctional PEG encapsulated Fe Wang H; Shen J; Cao G; Gai Z; Hong K; Debata PR; Banerjee P; Zhou S J Mater Chem B; 2013 Dec; 1(45):6225-6234. PubMed ID: 32261695 [TBL] [Abstract][Full Text] [Related]
47. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
48. Multifunctional superparamagnetic fe3O4@SiO2 core/shell nanoparticles: design and application for cell imaging. Zhao X; Zhao H; Yuan H; Lan M J Biomed Nanotechnol; 2014 Feb; 10(2):262-70. PubMed ID: 24738334 [TBL] [Abstract][Full Text] [Related]
49. Effects of poly(ethylene glycol) grafting density on the tumor targeting efficacy of nanoparticles with ligand modification. Zhang S; Tang C; Yin C Drug Deliv; 2015 Feb; 22(2):182-90. PubMed ID: 24215373 [TBL] [Abstract][Full Text] [Related]
50. Clickable iron oxide NPs based on catechol derived ligands: synthesis and characterization. Pozo-Torres E; Caro C; Avasthi A; Páez-Muñoz JM; García-Martín ML; Fernández I; Pernia Leal M Soft Matter; 2020 Apr; 16(13):3257-3266. PubMed ID: 32163076 [TBL] [Abstract][Full Text] [Related]
51. A non-sacrificial method for the quantification of poly(ethylene glycol) grafting density on gold nanoparticles for applications in nanomedicine. Lu J; Xue Y; Shi R; Kang J; Zhao CY; Zhang NN; Wang CY; Lu ZY; Liu K Chem Sci; 2019 Feb; 10(7):2067-2074. PubMed ID: 30842864 [TBL] [Abstract][Full Text] [Related]
52. A Single Pot Approach for Synthesis of Phosphate Coated Iron Oxide Nanoparticles. Muthukumaran T; Philip J J Nanosci Nanotechnol; 2015 Apr; 15(4):2715-25. PubMed ID: 26353485 [TBL] [Abstract][Full Text] [Related]
53. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. Bordeianu C; Parat A; Affolter-Zbaraszczuk C; Muller RN; Boutry S; Begin-Colin S; Meyer F; Laurent S; Felder-Flesch D J Mater Chem B; 2017 Jul; 5(26):5152-5164. PubMed ID: 32264101 [TBL] [Abstract][Full Text] [Related]
54. Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application. Kothandaraman H; Kaliyamoorthy A; Rajaram A; Kalaiselvan CR; Sahu NK; Govindasamy P; Rajaram M J Biol Phys; 2022 Dec; 48(4):383-397. PubMed ID: 36434309 [TBL] [Abstract][Full Text] [Related]
55. Polyglycerol and Poly(ethylene glycol) exhibit different effects on pharmacokinetics and antibody generation when grafted to nanoparticle surfaces. Shin K; Suh HW; Grundler J; Lynn AY; Pothupitiya JU; Moscato ZM; Reschke M; Bracaglia LG; Piotrowski-Daspit AS; Saltzman WM Biomaterials; 2022 Aug; 287():121676. PubMed ID: 35849999 [TBL] [Abstract][Full Text] [Related]
56. Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. Heidari Majd M; Asgari D; Barar J; Valizadeh H; Kafil V; Coukos G; Omidi Y J Drug Target; 2013 May; 21(4):328-40. PubMed ID: 23293842 [TBL] [Abstract][Full Text] [Related]
57. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Nguyen DH; Lee JS; Choi JH; Park KM; Lee Y; Park KD Acta Biomater; 2016 Apr; 35():109-17. PubMed ID: 26884278 [TBL] [Abstract][Full Text] [Related]
58. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. Cai H; An X; Cui J; Li J; Wen S; Li K; Shen M; Zheng L; Zhang G; Shi X ACS Appl Mater Interfaces; 2013 Mar; 5(5):1722-31. PubMed ID: 23388099 [TBL] [Abstract][Full Text] [Related]
59. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
60. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. Pelaz B; del Pino P; Maffre P; Hartmann R; Gallego M; Rivera-Fernández S; de la Fuente JM; Nienhaus GU; Parak WJ ACS Nano; 2015 Jul; 9(7):6996-7008. PubMed ID: 26079146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]