These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27046216)

  • 1. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.
    Tao X; Wang J; Liu C; Wang H; Yao H; Zheng G; Seh ZW; Cai Q; Li W; Zhou G; Zu C; Cui Y
    Nat Commun; 2016 Apr; 7():11203. PubMed ID: 27046216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries.
    Fan L; Zhuang HL; Zhang K; Cooper VR; Li Q; Lu Y
    Adv Sci (Weinh); 2016 Dec; 3(12):1600175. PubMed ID: 27981007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption-catalysis design with cerium oxide nanorods supported nickel-cobalt-oxide with multifunctional reaction interfaces for anchoring polysulfides and accelerating redox reactions in lithium sulfur battery.
    Azam S; Wei Z; Wang R
    J Colloid Interface Sci; 2023 Apr; 635():466-480. PubMed ID: 36599244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion.
    Ng SF; Lau MYL; Ong WJ
    Adv Mater; 2021 Dec; 33(50):e2008654. PubMed ID: 33811420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchically Porous SnO
    Wei W; Li J; Wang Q; Liu D; Niu J; Liu P
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6362-6370. PubMed ID: 31913593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerium oxide nanorods anchored on carbon nanofibers derived from cellulose paper as effective interlayer for lithium sulfur battery.
    Azam S; Wei Z; Wang R
    J Colloid Interface Sci; 2022 Jun; 615():417-431. PubMed ID: 35149354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries.
    Li G; Wang X; Seo MH; Li M; Ma L; Yuan Y; Wu T; Yu A; Wang S; Lu J; Chen Z
    Nat Commun; 2018 Feb; 9(1):705. PubMed ID: 29453414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium-Sulfur Battery.
    Liu YT; Liu S; Li GR; Yan TY; Gao XP
    Adv Sci (Weinh); 2020 Jun; 7(12):1903693. PubMed ID: 32596113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
    Liu X; Huang JQ; Zhang Q; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28160327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.
    Ponraj R; Kannan AG; Ahn JH; Kim DW
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4000-6. PubMed ID: 26808673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanostructured porous carbon/MoO
    Zhou HY; Sui ZY; Zhao FL; Sun YN; Wang HY; Han BH
    Nanotechnology; 2020 Jul; 31(31):315601. PubMed ID: 32294640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.
    Song J; Gordin ML; Xu T; Chen S; Yu Z; Sohn H; Lu J; Ren Y; Duan Y; Wang D
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4325-9. PubMed ID: 25663183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight of Enhanced Redox Chemistry for Porous MoO
    Wang C; Li K; Zhang F; Wu Z; Sun L; Wang L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42286-42293. PubMed ID: 30461261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.
    Zhang L; Wan F; Wang X; Cao H; Dai X; Niu Z; Wang Y; Chen J
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5594-5602. PubMed ID: 29357218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life.
    Liu F; Xiao Q; Wu HB; Sun F; Liu X; Li F; Le Z; Shen L; Wang G; Cai M; Lu Y
    ACS Nano; 2017 Mar; 11(3):2697-2705. PubMed ID: 28190334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline Multi-Metallic Compounds as Host Materials in Cathode for Lithium-Sulfur Batteries.
    Jiang YC; Arshad HMU; Li HJ; Liu S; Li GR; Gao XP
    Small; 2021 Jun; 17(22):e2005332. PubMed ID: 33690966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries.
    Tao X; Wang J; Ying Z; Cai Q; Zheng G; Gan Y; Huang H; Xia Y; Liang C; Zhang W; Cui Y
    Nano Lett; 2014 Sep; 14(9):5288-94. PubMed ID: 25089648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated Immobilization and Rapid Conversion of Polysulfide Enabled by a Hollow Metal Oxide/Sulfide/Nitrogen-Doped Carbon Heterostructure for Long-Cycle-Life Lithium-Sulfur Batteries.
    Liu H; Yang X; Jin B; Cui M; Li Y; Li Q; Li L; Sheng Q; Lang X; Jin E; Jeong S; Jiang Q
    Small; 2023 Aug; 19(32):e2300950. PubMed ID: 37066725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries.
    Ali T; Yan C
    ChemSusChem; 2020 Mar; 13(6):1447-1479. PubMed ID: 31436389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.