These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Leukemogenic potency of the novel FLT3-N676K mutant. Huang K; Yang M; Pan Z; Heidel FH; Scherr M; Eder M; Fischer T; Büsche G; Welte K; von Neuhoff N; Ganser A; Li Z Ann Hematol; 2016 Apr; 95(5):783-91. PubMed ID: 26891877 [TBL] [Abstract][Full Text] [Related]
24. Activating FLT3 mutants show distinct gain-of-function phenotypes in vitro and a characteristic signaling pathway profile associated with prognosis in acute myeloid leukemia. Janke H; Pastore F; Schumacher D; Herold T; Hopfner KP; Schneider S; Berdel WE; Büchner T; Woermann BJ; Subklewe M; Bohlander SK; Hiddemann W; Spiekermann K; Polzer H PLoS One; 2014; 9(3):e89560. PubMed ID: 24608088 [TBL] [Abstract][Full Text] [Related]
25. The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia. Cao T; Jiang N; Liao H; Shuai X; Su J; Zheng Q Sci Rep; 2019 Aug; 9(1):12209. PubMed ID: 31434952 [TBL] [Abstract][Full Text] [Related]
27. Lyn is an important component of the signal transduction pathway specific to FLT3/ITD and can be a therapeutic target in the treatment of AML with FLT3/ITD. Okamoto M; Hayakawa F; Miyata Y; Watamoto K; Emi N; Abe A; Kiyoi H; Towatari M; Naoe T Leukemia; 2007 Mar; 21(3):403-10. PubMed ID: 17230226 [TBL] [Abstract][Full Text] [Related]
29. Loss of c-Cbl E3 ubiquitin ligase activity enhances the development of myeloid leukemia in FLT3-ITD mutant mice. Taylor SJ; Thien CB; Dagger SA; Duyvestyn JM; Grove CS; Lee BH; Gilliland DG; Langdon WY Exp Hematol; 2015 Mar; 43(3):191-206.e1. PubMed ID: 25534201 [TBL] [Abstract][Full Text] [Related]
30. MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Stubbs MC; Kim YM; Krivtsov AV; Wright RD; Feng Z; Agarwal J; Kung AL; Armstrong SA Leukemia; 2008 Jan; 22(1):66-77. PubMed ID: 17851551 [TBL] [Abstract][Full Text] [Related]
31. SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. Reddy PN; Sargin B; Choudhary C; Stein S; Grez M; Müller-Tidow C; Berdel WE; Serve H; Brandts CH; Blood; 2012 Aug; 120(8):1691-702. PubMed ID: 22517899 [TBL] [Abstract][Full Text] [Related]
32. STAT5-dependent regulation of CDC25A by miR-16 controls proliferation and differentiation in FLT3-ITD acute myeloid leukemia. Sueur G; Boutet A; Gotanègre M; Mansat-De Mas V; Besson A; Manenti S; Bertoli S Sci Rep; 2020 Feb; 10(1):1906. PubMed ID: 32024878 [TBL] [Abstract][Full Text] [Related]
33. A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival. Masson K; Liu T; Khan R; Sun J; Rönnstrand L Br J Haematol; 2009 Jul; 146(2):193-202. PubMed ID: 19438505 [TBL] [Abstract][Full Text] [Related]
34. Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation. Kresinsky A; Schnöder TM; Jacobsen ID; Rauner M; Hofbauer LC; Ast V; König R; Hoffmann B; Svensson CM; Figge MT; Hilger I; Heidel FH; Böhmer FD; Müller JP Oncogene; 2019 Jun; 38(24):4773-4787. PubMed ID: 30820040 [TBL] [Abstract][Full Text] [Related]
35. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Mizuki M; Fenski R; Halfter H; Matsumura I; Schmidt R; Müller C; Grüning W; Kratz-Albers K; Serve S; Steur C; Büchner T; Kienast J; Kanakura Y; Berdel WE; Serve H Blood; 2000 Dec; 96(12):3907-14. PubMed ID: 11090077 [TBL] [Abstract][Full Text] [Related]
36. [FMS-like tyrosine kinase 3 gene mutations in acute myeloid leukemia]. Han YL; Zhang SJ; Qiao C; Dai D; Sun XM; Xu YL; Qian SX; Xu W; Wang JS; Li JY Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2009 Oct; 17(5):1135-9. PubMed ID: 19840437 [TBL] [Abstract][Full Text] [Related]
37. [Detection of point mutation at second tyrosine kinase domain of FLT3 gene in acute myeloid leukemia]. Wang LH; Wang M; Zhou CL; Chen S; Zhang XW; Xing HY; Wang JX Zhonghua Xue Ye Xue Za Zhi; 2005 Jun; 26(6):335-8. PubMed ID: 16185475 [TBL] [Abstract][Full Text] [Related]
38. Impact of CXCR4 inhibition on FLT3-ITD-positive human AML blasts. Jacobi A; Thieme S; Lehmann R; Ugarte F; Malech HL; Koch S; Thiede C; Müller K; Bornhäuser M; Ryser M; Brenner S Exp Hematol; 2010 Mar; 38(3):180-90. PubMed ID: 20035824 [TBL] [Abstract][Full Text] [Related]
39. FLT3/D835Y mutation knock-in mice display less aggressive disease compared with FLT3/internal tandem duplication (ITD) mice. Bailey E; Li L; Duffield AS; Ma HS; Huso DL; Small D Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21113-8. PubMed ID: 24255108 [TBL] [Abstract][Full Text] [Related]
40. Ponatinib may overcome resistance of FLT3-ITD harbouring additional point mutations, notably the previously refractory F691I mutation. Zirm E; Spies-Weisshart B; Heidel F; Schnetzke U; Böhmer FD; Hochhaus A; Fischer T; Scholl S Br J Haematol; 2012 May; 157(4):483-92. PubMed ID: 22409268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]