These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 27046583)
1. The Effect of Optical Marker Configuration on Tracking Accuracy in Image Guided Surgery. Mekuria K; Kim Y; Cho H; Lee D; Park S; Lee BH; Jang KM; Wang JH Stud Health Technol Inform; 2016; 220():227-32. PubMed ID: 27046583 [TBL] [Abstract][Full Text] [Related]
2. Fiducial markers configuration optimization in image-guided surgery. Bao N; Chen Y; Yue Y; Li H; Cui Z; Zhuang J; Tian S; Kang Y Biomed Mater Eng; 2014; 24(6):3361-71. PubMed ID: 25227046 [TBL] [Abstract][Full Text] [Related]
3. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy. Yan G; Li J; Huang Y; Mittauer K; Lu B; Liu C Med Phys; 2014 Oct; 41(10):101713. PubMed ID: 25281952 [TBL] [Abstract][Full Text] [Related]
4. Fiducial optimization for minimal target registration error in image-guided neurosurgery. Shamir RR; Joskowicz L; Shoshan Y IEEE Trans Med Imaging; 2012 Mar; 31(3):725-37. PubMed ID: 22156977 [TBL] [Abstract][Full Text] [Related]
5. Fiducial-based registration with a touchable region model. Kim S; Kazanzides P Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):277-289. PubMed ID: 27581335 [TBL] [Abstract][Full Text] [Related]
6. [Evaluation of a DC pulsed magnetic tracking system in neurosurgical navigation: technique, accuracies, and influencing factors]. Suess O; Suess S; Mularski S; Kühn B; Picht T; Schönherr S; Kombos T Biomed Tech (Berl); 2007 Jun; 52(3):223-33. PubMed ID: 17561783 [TBL] [Abstract][Full Text] [Related]
7. Designing optically tracked instruments for image-guided surgery. West JB; Maurer CR IEEE Trans Med Imaging; 2004 May; 23(5):533-45. PubMed ID: 15147007 [TBL] [Abstract][Full Text] [Related]
8. Effect of fiducial configuration on target registration error in image-guided cranio-maxillofacial surgery. Zhang W; Wang C; Yu H; Liu Y; Shen G J Craniomaxillofac Surg; 2011 Sep; 39(6):407-11. PubMed ID: 21067938 [TBL] [Abstract][Full Text] [Related]
9. Robot-Based Autonomous Neuroregistration and Neuronavigation: Implementation and Case Studies. Kaushik A; Dwarakanath TA; Bhutani G; Srinivas D World Neurosurg; 2020 Feb; 134():e256-e271. PubMed ID: 31629139 [TBL] [Abstract][Full Text] [Related]
10. Spatial Position Measurement System for Surgical Navigation Using 3-D Image Marker-Based Tracking Tools With Compact Volume. Fan Z; Chen G; Wang J; Liao H IEEE Trans Biomed Eng; 2018 Feb; 65(2):378-389. PubMed ID: 29346106 [TBL] [Abstract][Full Text] [Related]
11. Frequency and Causes of Line of Sight Issues During Neurosurgical Procedures Using Optical Image-Guided Systems. Mehbodniya AH; Moghavvemi M; Narayanan V; Waran V World Neurosurg; 2019 Feb; 122():e449-e454. PubMed ID: 30347306 [TBL] [Abstract][Full Text] [Related]
12. Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. Woerdeman PA; Willems PW; Noordmans HJ; Tulleken CA; van der Sprenkel JW J Neurosurg; 2007 Jun; 106(6):1012-6. PubMed ID: 17564173 [TBL] [Abstract][Full Text] [Related]
13. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Brouwer OR; Buckle T; Bunschoten A; Kuil J; Vahrmeijer AL; Wendler T; Valdés-Olmos RA; van der Poel HG; van Leeuwen FW Phys Med Biol; 2012 May; 57(10):3123-36. PubMed ID: 22547491 [TBL] [Abstract][Full Text] [Related]
14. The application accuracy of the NeuroMate robot--A quantitative comparison with frameless and frame-based surgical localization systems. Li QH; Zamorano L; Pandya A; Perez R; Gong J; Diaz F Comput Aided Surg; 2002; 7(2):90-8. PubMed ID: 12112718 [TBL] [Abstract][Full Text] [Related]
15. [Development of automatic navigation measuring system using template-matching software in image guided neurosurgery]. Watanabe Y; Hayashi Y; Fujii M; Kimura M; Sugiura A; Tsuzaka M; Wakabayashi T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2010 Feb; 66(2):131-6. PubMed ID: 20203426 [TBL] [Abstract][Full Text] [Related]
16. A region-based anatomical landmark configuration for sinus surgery using image guided navigation system: a phantom-study. Ahmadian A; Fathi Kazerooni A; Mohagheghi S; Amini Khoiy K; Sadr Hosseini M J Craniomaxillofac Surg; 2014 Sep; 42(6):816-24. PubMed ID: 24461706 [TBL] [Abstract][Full Text] [Related]
17. A novel registration method for image-guided neurosurgery system based on stereo vision. An Y; Wang M; Song Z Biomed Mater Eng; 2015; 26 Suppl 1():S967-73. PubMed ID: 26406100 [TBL] [Abstract][Full Text] [Related]
18. A prototype biosensor-integrated image-guided surgery system. Reisner LA; King BW; Klein MD; Auner GW; Pandya AK Int J Med Robot; 2007 Mar; 3():82-8. PubMed ID: 17441030 [TBL] [Abstract][Full Text] [Related]
19. Performance of magnetic field-guided navigation system for interventional neurosurgical and cardiac procedures. Chu JC; Hsi WC; Hubbard L; Zhang Y; Bernard D; Reeder P; Lopes D J Appl Clin Med Phys; 2005; 6(3):143-9. PubMed ID: 16143799 [TBL] [Abstract][Full Text] [Related]
20. [Computer-assisted navigation system for interventional CT-guided procedures: results of phantom and clinical studies]. Meier-Meitinger M; Nagel M; Kalender W; Bautz WA; Baum U Rofo; 2008 Apr; 180(4):310-7. PubMed ID: 18499907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]