BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27046585)

  • 1. Wearable Ultrasound Array for Point-of-Care Imaging and Patient Monitoring.
    Mierzwa AP; Huang SP; Nguyen KT; Culjat MO; Singh RS
    Stud Health Technol Inform; 2016; 220():241-4. PubMed ID: 27046585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and experimental study of microcantilever ultrasonic detection transducers.
    Chen X; Stratoudaki T; Sharples SD; Clark M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2722-32. PubMed ID: 20040409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging.
    Novell A; Legros M; Felix N; Bouakaz A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2733-43. PubMed ID: 20040410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging.
    Yang Y; Tian H; Wang YF; Shu Y; Zhou CJ; Sun H; Zhang CH; Chen H; Ren TL
    Sensors (Basel); 2013 Jul; 13(8):9624-34. PubMed ID: 23896705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse inversion sequences for mechanically scanned transducers.
    Frijlink ME; Goertz DE; de Jong N; van der Steen AF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2154-63. PubMed ID: 18986864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and characterisation of a ultrasound-actuated needle for improved visibility in ultrasound-guided regional anaesthesia and tissue biopsy.
    Kuang Y; Hilgers A; Sadiq M; Cochran S; Corner G; Huang Z
    Ultrasonics; 2016 Jul; 69():38-46. PubMed ID: 27022669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. John Rogers and the Ultrathin Limits of Technology: His Flexible, Skin-Mounted Biostamp is Changing the Game for Wearable Diagnostic Devices.
    Chandler DL
    IEEE Pulse; 2016; 7(1):9-12. PubMed ID: 26799720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabric-based integrated energy devices for wearable activity monitors.
    Jung S; Lee J; Hyeon T; Lee M; Kim DH
    Adv Mater; 2014 Sep; 26(36):6329-34. PubMed ID: 25070873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency piezoelectric MEMS ultrasound transducers.
    Mina IG; Kim H; Kim I; Park SK; Choi K; Jackson TN; Tutwiler RL; Trolier-McKinstry S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2422-30. PubMed ID: 18276533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.
    Martin KH; Lindsey BD; Ma J; Lee M; Li S; Foster FS; Jiang X; Dayton PA
    Sensors (Basel); 2014 Nov; 14(11):20825-42. PubMed ID: 25375755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency (>50 MHz) medical ultrasound linear arrays fabricated from micromachined bulk PZT materials.
    Liu C; Zhou Q; Djuth FT; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):315-8. PubMed ID: 24626041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducing and imaging thermal strain using a single ultrasound linear array.
    Huang SW; Kim K; Witte RS; Olafsson R; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1718-20. PubMed ID: 17941376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.
    Cai F; Yi C; Liu S; Wang Y; Liu L; Liu X; Xu X; Wang L
    Biosens Bioelectron; 2016 Mar; 77():907-13. PubMed ID: 26520253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the relationship between the inter-rod coupling and the efficiency of piezocomposite high-intensity focused ultrasound transducers.
    Chen GS; Pan CC; Lin YL; Cheng JS
    Ultrasonics; 2014 Mar; 54(3):789-94. PubMed ID: 24269167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.
    Tadayon MA; Ashkenazi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2021-30. PubMed ID: 24658733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an ultrasonic sensor for measuring distance and detecting obstacles.
    Park J; Je Y; Lee H; Moon W
    Ultrasonics; 2010 Mar; 50(3):340-6. PubMed ID: 19919873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of a close-proximity thermoacoustic sensor.
    Xing J; Choi M; Ang W; Yu X; Chen J
    Ultrasound Med Biol; 2013 Sep; 39(9):1613-22. PubMed ID: 23820248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of low-cost portable ultrasound systems: review.
    Baran JM; Webster JG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():792-5. PubMed ID: 19963733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.