BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27046606)

  • 1. A Motion Tracking and Sensor Fusion Module for Medical Simulation.
    Shen Y; Wu F; Tseng KS; Ye D; Raymond J; Konety B; Sweet R
    Stud Health Technol Inform; 2016; 220():363-6. PubMed ID: 27046606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.
    Zhou S; Fei F; Zhang G; Liu Y; Li WJ
    Sensors (Basel); 2014 Aug; 14(9):15641-57. PubMed ID: 25157546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Missing Sample Recovery for Wireless Inertial Sensor-Based Human Movement Acquisition.
    Kim KJ; Agrawal V; Gaunaurd I; Gailey RS; Bennett CL
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1191-1198. PubMed ID: 26929054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors.
    Bai L; Pepper MG; Yan Y; Spurgeon SK; Sakel M; Phillips M
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):232-43. PubMed ID: 25420266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments.
    Tian Y; Wei H; Tan J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):254-64. PubMed ID: 22801527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder.
    Zhao Z
    Biomed Mater Eng; 2014; 24(6):2665-72. PubMed ID: 25226970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Predictive Movement Models From Fabric-Mounted Wearable Sensors.
    Michael B; Howard M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1395-1404. PubMed ID: 26685255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Externally navigated bronchoscopy using 2-D motion sensors: dynamic phantom validation.
    Luo X; Kitasaka T; Mori K
    IEEE Trans Med Imaging; 2013 Oct; 32(10):1745-64. PubMed ID: 23686944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements.
    Blumrosen G; Luttwak A
    Sensors (Basel); 2013 Aug; 13(9):11289-313. PubMed ID: 23979481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid attitude estimation for laparoscopic surgical tools: a preliminary study.
    Ren H; Kazanzides P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5583-6. PubMed ID: 19964132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable inertial measurement unit for long-term monitoring in the dependency care area.
    Rodríguez-Martín D; Pérez-López C; Samà A; Cabestany J; Català A
    Sensors (Basel); 2013 Oct; 13(10):14079-104. PubMed ID: 24145917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mobility monitoring in very low resolution visual sensor network.
    Bo NB; Deboeverie F; Eldib M; Guan J; Xie X; Niño J; Van Haerenborgh D; Slembrouck M; Van de Velde S; Steendam H; Veelaert P; Kleihorst R; Aghajan H; Philips W
    Sensors (Basel); 2014 Nov; 14(11):20800-24. PubMed ID: 25375754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of a DC pulsed magnetic tracking system in neurosurgical navigation: technique, accuracies, and influencing factors].
    Suess O; Suess S; Mularski S; Kühn B; Picht T; Schönherr S; Kombos T
    Biomed Tech (Berl); 2007 Jun; 52(3):223-33. PubMed ID: 17561783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.